617 research outputs found

    Distribution-Sensitive Bounds on Relative Approximations of Geometric Ranges

    Get PDF
    A family R of ranges and a set X of points, all in R^d, together define a range space (X, R|_X), where R|_X = {X cap h | h in R}. We want to find a structure to estimate the quantity |X cap h|/|X| for any range h in R with the (rho, epsilon)-guarantee: (i) if |X cap h|/|X| > rho, the estimate must have a relative error epsilon; (ii) otherwise, the estimate must have an absolute error rho epsilon. The objective is to minimize the size of the structure. Currently, the dominant solution is to compute a relative (rho, epsilon)-approximation, which is a subset of X with O~(lambda/(rho epsilon^2)) points, where lambda is the VC-dimension of (X, R|_X), and O~ hides polylog factors. This paper shows a more general bound sensitive to the content of X. We give a structure that stores O(log (1/rho)) integers plus O~(theta * (lambda/epsilon^2)) points of X, where theta - called the disagreement coefficient - measures how much the ranges differ from each other in their intersections with X. The value of theta is between 1 and 1/rho, such that our space bound is never worse than that of relative (rho, epsilon)-approximations, but we improve the latter\u27s 1/rho term whenever theta = o(1/(rho log (1/rho))). We also prove that, in the worst case, summaries with the (rho, 1/2)-guarantee must consume Omega(theta) words even for d = 2 and lambda <=3. We then constrain R to be the set of halfspaces in R^d for a constant d, and prove the existence of structures with o(1/(rho epsilon^2)) size offering (rho,epsilon)-guarantees, when X is generated from various stochastic distributions. This is the first formal justification on why the term 1/rho is not compulsory for "realistic" inputs

    Joints tightened

    Full text link
    In dd-dimensional space (over any field), given a set of lines, a joint is a point passed through by dd lines not all lying in some hyperplane. The joints problem asks to determine the maximum number of joints formed by LL lines, and it was one of the successes of the Guth--Katz polynomial method. We prove a new upper bound on the number of joints that matches, up to a 1+o(1)1+o(1) factor, the best known construction: place kk generic hyperplanes, and use their (d−1)(d-1)-wise intersections to form (kd−1)\binom{k}{d-1} lines and their dd-wise intersections to form (kd)\binom{k}{d} joints. Guth conjectured that this construction is optimal. Our technique builds on the work on Ruixiang Zhang proving the multijoints conjecture via an extension of the polynomial method. We set up a variational problem to control the high order of vanishing of a polynomial at each joint.Comment: 10 page

    An Adaptive Moving Mesh Finite Element Method and Its Application to Mathematical Models from Physical Sciences and Image Processing

    Get PDF
    Moving sharp fronts are an important feature of many mathematical models from physical sciences and cause challenges in numerical computation. In order to obtain accurate solutions, a high resolution of mesh is necessary, which results in high computational cost if a fixed mesh is used. As a solution to this issue, an adaptive mesh method, which is called the moving mesh partial differential equation (MMPDE) method, is described in this work. The MMPDE method has the advantage of adaptively relocating the mesh points to increase the densities around sharp layers of the solutions, without increasing the mesh size. Moreover, this strategy can generate a nonsingular mesh even on non-convex and non-simply connected domains, given that the initial mesh is nonsingular. The focus of this thesis is on the application of the MMPDE method to mathematical models from physical sciences and image segmentation. In particular, this thesis includes the selection of the regularization parameter for the Ambrosio-Tortorelli functional, a simulation of the contact sets in the evolution of the micro-electro mechanical systems, and a numerical study of the flux selectivity in the Poisson-Nernst-Planck model. Sharp interfaces take place in all these three models, bringing interesting features and rich phenomena to study
    • …
    corecore