12 research outputs found

    Preparation and Application of Coal-Liquefaction-Residue-Based Carbon Material

    No full text
    P-Nitrophenol (4-NP) is a high toxicity material and has harmful effects on the environment. Thus, the analysis of 4-NP is an important topic at present. In this work, the fabrication of a novel electrochemical sensor based on coal-liquefaction-residue (CLR)-derived porous carbon (PC) materials. CLR-based porous carbon material was prepared by the high-temperature carbonization method and the morphology and structure of the materials were characterized by scanning electron microscopy and other characterization methods. Subsequently, the electrochemical properties of the modified electrodes were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements. The results showed that under optimal conditions, the sensor had a good electrochemical performance for environmental pollutant 4-NP. In particular, the linear range of the sensor was 10–200 μmol·L-1 and the detection limit was 1.169 μmol·L−1 on the basis of the signal-to-noise ratio S/N = 3. The electrode showed excellent stability, reproducibility and repetitiveness and the sensor also had good selectivity. In addition, the newly constructed sensor exhibited adsorption-controlled kinetics and the recovery rate of 4-NP in actual water samples could reach 90.06~95.17%, indicating that the sensor had good practical application prospects

    In Situ Molecular Engineering Strategy to Construct Hierarchical MoS2 Double-Layer Nanotubes for Ultralong Lifespan “Rocking-Chair” Aqueous Zinc-Ion Batteries

    No full text
    Rechargeable aqueous zinc ion batteries (AZIBs) have gained considerable attention owing to their low cost and high safety, but dendrite growth, low plating/stripping efficiency, surface passivation, and self-erosion of the Zn metal anode are hindering their application. Herein, a one-step in situ molecular engineering strategy for the simultaneous construction of hierarchical MoS2 double-layer nanotubes (MoS2-DLTs) with expanded layer-spacing, oxygen doping, structural defects, and an abundant 1T-phase is proposed, which are designed as an intercalation-type anode for “rocking-chair” AZIBs, avoiding the Zn anode issues and therefore displaying a long cycling life. Benefiting from the structural optimization and molecular engineering, the Zn2+ diffusion efficiency and interface reaction kinetics of MoS2-DLTs are enhanced. When coupled with a homemade ZnMn2O4 cathode, the assembled MoS2-DLTs//ZnMn2O4 full battery exhibited impressive cycling stability with a capacity retention of 86.6% over 10 000 cycles under 1 A g-1anode, outperforming most of the reported “rocking-chair” AZIBs. The Zn2+/H+ cointercalation mechanism of MoS2-DLTs is investigated by synchrotron in situ powder X-ray diffraction and multiple ex situ characterizations. This research demonstrates the feasibility of MoS2 for Zn-storage anodes that can be used to construct reliable aqueous full batteries

    Structure-based antigenic epitope and PEGylation improve the efficacy of staphylokinase

    No full text
    Abstract Staphylokinase (Sak) holds promise for use in thrombolytic therapy for acute myocardial infarction. However, its immunogenicity is a major disadvantage under clinical conditions. PEGylation has become a sophisticated method to decrease that immunogenicity. In this report, according predicted epitope from the active center, five residues, including Gly79, Leu82, Lys84, Ala97, and Arg104 have been mutant as cysteine for mono PEGylation, respectively. According to the relative immunogenicity of Sak or its PEGylation derivatives, the amount of specific anti-Sak IgG antibodies elicited by PEGylation proteins, including C79G, C82L, C84K, C97A, and C104R in BALB/c mice decreased by approximately 15–75% each. PEGylated Sak derivatives showed a decrease of up to 75% in the immune reactivity in PEG-Sak-C104R. Thrombelastography experiments showed that two PEG-conjugated derivatives, PEG-Sak-C97A (Ly30, 68.14 ± 2.51%) and PEG-Sak-C104R (Ly30, 66.49 ± 5.97%), the LY30 of PEG-Sak-C97A, and PEG-Sak-C104R produced values very similar to those of wild-type Sak. The fibrin plate assays showed the bioactivity of PEG-Sak-C104R to exhibit the most activity approximately as much as urokinase (diameter of halo pattern, 18.6 ± 1.06 mm) and tPA (diameter of halo pattern, 17.2 ± 0.49 mm). The Sak PEGylation derivative PEG-Sak-C104R was also selected for further in vivo activity experimentation. The thrombolytic ability of PEG-Sak-C104R is a little lower than wild-type Sak, whereas, this PEGylated protein retained high activity suitable for thrombolytic therapy. Collectively, with the in vivo and in vitro experiments, the present study suggests that site mutant PEGylation, PEG-Sak-C104R, is a suitable type of PEGylation for clinical applications. Further optimization would help maintain the bioactivity and decrease the immunogenicity of staphylokinase

    Associations of genetic variations in the M3 receptor with salt sensitivity, longitudinal changes in blood pressure and the incidence of hypertension in Chinese adults

    No full text
    Abstract Recent studies have reported the role of the M3 muscarinic acetylcholine receptor (M3R), a member of the G‐protein coupled receptor superfamily, encoded by the CHRM3 gene, in cardiac function and the regulation of blood pressure (BP). The aim of this study was to investigate the associations of CHRM3 genetic variants with salt sensitivity, longitudinal BP changes, and the development of hypertension in a Chinese population. We conducted a chronic dietary salt intervention experiment in a previously established Chinese cohort to analyze salt sensitivity of BP. Additionally, a 14‐year follow‐up was conducted on all participants in the cohort to evaluate the associations of CHRM3 polymorphisms with longitudinal BP changes, as well as the incidence of hypertension. The single nucleotide polymorphism (SNP) rs10802811 within the CHRM3 gene displayed significant associations with low salt‐induced changes in systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), while rs373288072, rs114677844, and rs663148 exhibited significant associations with SBP and MAP responses to a high‐salt diet. Furthermore, the SNP rs58359377 was associated with changes in SBP and pulse pressure (PP) over the course of 14 years. Additionally, the 14‐year follow‐up revealed a significant association between the rs619288 polymorphism and an increased risk of hypertension (OR = 1.74, 95% CI: 1.06‐2.87, p = .029). This study provides evidence that CHRM3 may have a role in salt sensitivity, BP progression, and the development of hypertension
    corecore