9 research outputs found
Efficacy of Futibatinib, an Irreversible Fibroblast Growth Factor Receptor Inhibitor, in FGFR-Altered Breast Cancer
Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib\u27s efficacy in breast cancer models. Nine breast cancer patient-derived xenografts (PDXs) with various FGFR1-4 alterations and expression levels were treated with futibatinib. Antitumor efficacy was evaluated by change in tumor volume and time to tumor doubling. Alterations indicating sensitization to futibatinib in vivo were further characterized in vitro. FGFR gene expression between patient tumors and matching PDXs was significantly correlated; however, overall PDXs had higher FGFR3-4 expression. Futibatinib inhibited tumor growth in 3 of 9 PDXs, with tumor stabilization in an FGFR2-amplified model and prolonged regression (\u3e 110 days) in an FGFR2 Y375C mutant/amplified model. FGFR2 overexpression and, to a greater extent, FGFR2 Y375C expression in MCF10A cells enhanced cell growth and sensitivity to futibatinib. Per institutional and public databases, FGFR2 mutations and amplifications had a population frequency of 1.1%-2.6% and 1.5%-2.5%, respectively, in breast cancer patients. FGFR2 alterations in breast cancer may represent infrequent but highly promising targets for futibatinib
Efficacy of futibatinib, an irreversible fibroblast growth factor receptor inhibitor, in FGFR-altered breast cancer.
Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib\u27s efficacy in breast cancer models. Nine breast cancer patient-derived xenografts (PDXs) with various FGFR1-4 alterations and expression levels were treated with futibatinib. Antitumor efficacy was evaluated by change in tumor volume and time to tumor doubling. Alterations indicating sensitization to futibatinib in vivo were further characterized in vitro. FGFR gene expression between patient tumors and matching PDXs was significantly correlated; however, overall PDXs had higher FGFR3-4 expression. Futibatinib inhibited tumor growth in 3 of 9 PDXs, with tumor stabilization in an FGFR2-amplified model and prolonged regression (\u3e 110 days) in an FGFR2 Y375C mutant/amplified model. FGFR2 overexpression and, to a greater extent, FGFR2 Y375C expression in MCF10A cells enhanced cell growth and sensitivity to futibatinib. Per institutional and public databases, FGFR2 mutations and amplifications had a population frequency of 1.1%-2.6% and 1.5%-2.5%, respectively, in breast cancer patients. FGFR2 alterations in breast cancer may represent infrequent but highly promising targets for futibatinib
Oxidative Phosphorylation Is a Metabolic Vulnerability in Chemotherapy-Resistant Triple-Negative Breast Cance
Oxidative phosphorylation (OXPHOS) is an active metabolic pathway in many cancers. RNA from pretreatment biopsies from patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy demonstrated that the top canonical pathway associated with worse outcome was higher expression of OXPHOS signature. IACS-10759, a novel inhibitor of OXPHOS, stabilized growth in multiple TNBC patient-derived xenografts (PDX). On gene expression profiling, all of the sensitive models displayed a basal-like 1 TNBC subtype. Expression of mitochondrial genes was significantly higher in sensitive PDXs. An in vivo functional genomics screen to identify synthetic lethal targets in tumors treated with IACS-10759 found several potential targets, including CDK4. We validated the antitumor efficacy of the combination of palbociclib, a CDK4/6 inhibitor, and IACS-10759 in vitro and in vivo. In addition, the combination of IACS-10759 and multikinase inhibitor cabozantinib had improved antitumor efficacy. Taken together, our data suggest that OXPHOS is a metabolic vulnerability in TNBC that may be leveraged with novel therapeutics in combination regimens. SIGNIFICANCE: These findings suggest that triple-negative breast cancer is highly reliant on OXPHOS and that inhibiting OXPHOS may be a novel approach to enhance efficacy of several targeted therapies
Therapeutic Silencing of Bcl-2 by Systemically Administered siRNA Nanotherapeutics Inhibits Tumor Growth by Autophagy and Apoptosis and Enhances the Efficacy of Chemotherapy in Orthotopic Xenograft Models of ER (−) and ER (+) Breast Cancer
Bcl-2 is overexpressed in about a half of human cancers and 50–70% of breast cancer patients, thereby conferring resistance to conventional therapies and making it an excellent therapeutic target. Small interfering RNA (siRNA) offers novel and powerful tools for specific gene silencing and molecularly targeted therapy. Here, we show that therapeutic silencing of Bcl-2 by systemically administered nanoliposomal (NL)-Bcl-2 siRNA (0.15 mg siRNA/kg, intravenous) twice a week leads to significant antitumor activity and suppression of growth in both estrogen receptor-negative (ER(−)) MDA-MB-231 and ER-positive (+) MCF7 breast tumors in orthotopic xenograft models (P < 0.05). A single intravenous injection of NL-Bcl-2-siRNA provided robust and persistent silencing of the target gene expression in xenograft tumors. NL-Bcl-2-siRNA treatment significantly increased the efficacy of chemotherapy when combined with doxorubicin in both MDA-MB-231 and MCF-7 animal models (P < 0.05). NL-Bcl-2-siRNA treatment-induced apoptosis and autophagic cell death, and inhibited cyclin D1, HIF1α and Src/Fak signaling in tumors. In conclusion, our data provide the first evidence that in vivo therapeutic targeting Bcl-2 by systemically administered nanoliposomal-siRNA significantly inhibits growth of both ER(−) and ER(+) breast tumors and enhances the efficacy of chemotherapy, suggesting that therapeutic silencing of Bcl-2 by siRNA is a viable approach in breast cancers
STAMP2 increases oxidative stress and is critical for prostate cancer
The six transmembrane protein of prostate 2 (STAMP2) is an androgen‐regulated gene whose mRNA expression is increased in prostate cancer (PCa). Here, we show that STAMP2 protein expression is increased in human PCa compared with benign prostate that is also correlated with tumor grade and treatment response. We also show that STAMP2 significantly increased reactive oxygen species (ROS) in PCa cells through its iron reductase activity which also depleted NADPH levels. Knockdown of STAMP2 expression in PCa cells inhibited proliferation, colony formation, and anchorage‐independent growth, and significantly increased apoptosis. Furthermore, STAMP2 effects were, at least in part, mediated by activating transcription factor 4 (ATF4), whose expression is regulated by ROS. Consistent with in vitro findings, silencing STAMP2 significantly inhibited PCa xenograft growth in mice. Finally, therapeutic silencing of STAMP2 by systemically administered nanoliposomal siRNA profoundly inhibited tumor growth in two established preclinical PCa models in mice. These data suggest that STAMP2 is required for PCa progression and thus may serve as a novel therapeutic target
Selinexor (KPT-330) demonstrates anti-tumor efficacy in preclinical models of triple-negative breast cancer
Abstract Background Selinexor (KPT-330) is an oral agent that has been shown to inhibit the nuclear exporter XPO1. Given the pressing need for novel therapies for triple-negative breast cancer (TNBC), we sought to determine the antitumor effects of selinexor in vitro and in vivo. Methods Twenty-six breast cancer cell lines of different breast cancer subtypes were treated with selinexor in vitro. Cell proliferation assays were used to measure the half-maximal inhibitory concentration (IC50) and to test the effects in combination with chemotherapy. In vivo efficacy was tested both as a single agent and in combination therapy in TNBC patient-derived xenografts (PDXs). Results Selinexor demonstrated growth inhibition in all 14 TNBC cell lines tested; TNBC cell lines were more sensitive to selinexor (median IC50 44 nM, range 11 to 550 nM) than were estrogen receptor (ER)-positive breast cancer cell lines (median IC50 > 1000 nM, range 40 to >1000 nM; P = 0.017). In multiple TNBC cell lines, selinexor was synergistic with paclitaxel, carboplatin, eribulin, and doxorubicin in vitro. Selinexor as a single agent reduced tumor growth in vivo in four of five different TNBC PDX models, with a median tumor growth inhibition ratio (T/C: treatment/control) of 42% (range 31 to 73%) and demonstrated greater antitumor efficacy in combination with paclitaxel or eribulin (average T/C ratios of 27% and 12%, respectively). Conclusions Collectively, these findings strongly suggest that selinexor is a promising therapeutic agent for TNBC as a single agent and in combination with standard chemotherapy
Additional file 3: of Selinexor (KPT-330) demonstrates anti-tumor efficacy in preclinical models of triple-negative breast cancer
Effects of selinexor on the cell cycle. SUM-159PT and MDA-MB-468 cells were treated with 1 nM paclitaxel alone (2 nM for MDA-MB-468), 400 nM selinexor alone, and the combination of both. After 72Â hours, cells were stained with propidium iodide and analyzed via flow cytometry. (DOCX 514 kb
The Znf304-Integrin Axis Protects Against Anoikis In Cancer
Ovarian cancer (OC) is a highly metastatic disease, but no effective strategies to target this process are currently available. Here, an integrative computational analysis of the Cancer Genome Atlas OC data set and experimental validation identifies a zinc finger transcription factor ZNF304 associated with OC metastasis. High tumoral ZNF304 expression is associated with poor overall survival in OC patients. Through reverse phase protein array analysis, we demonstrate that ZNF304 promotes multiple proto-oncogenic pathways important for cell survival, migration and invasion. ZNF304 transcriptionally regulates beta 1 integrin, which subsequently regulates Src/focal adhesion kinase and paxillin and prevents anoikis. In vivo delivery of ZNF304 siRNA by a dual assembly nanoparticle leads to sustained gene silencing for 14 days, increased anoikis and reduced tumour growth in orthotopic mouse models of OC. Taken together, ZNF304 is a transcriptional regulator of beta 1 integrin, promotes cancer cell survival and protects against anoikis in OC.WoSScopu