59 research outputs found
Emm type distribution of group A Streptococcus in China during 1990 and 2020: a systematic review and implications for vaccine coverage
BackgroundThe recent increase of group A Streptococcus (GAS) infections in Europe has aroused global concern. We aim to provide molecular biological data for GAS prevention and control in China by analyzing the temporal shift of emm type.MethodsWe collected studies reporting GAS emm types in China from 1990 to 2020 by PRISMA statement and established a summary database including emm types and literature quality assessment. Based on the database we analyzed the geographic distribution of emm types from 1990 to 2020 and assessed the coverage of the known GAS 30-valent vaccine. Outbreak-associated emm types that had been reported over the past 30 years were also included.Results47 high quality studies were included for a systematic analysis of emm type distribution. This generated a database including totally 12,347 GAS isolates and 85 emm types. Shift of dominant emm type was witnessed during the past 30 years in China. In mainland China, dominant types changed from emm3, emm1, emm4, emm12 in 1990s to emm12 and emm1 in 2000s and 2010s. Hong Kong and Taiwan were dominated by emm12, emm4 and emm1, of which emm4 reduced but emm12 increased in 2010s significantly. From 1990 to 2020, newly found emm types were increasingly reported in various regions of China. The reported 30-valent M protein vaccine covered 26 M types prevalent in China, including all dominant types
Detection of Epidemic Scarlet Fever Group A Streptococcus in Australia.
Sentinel hospital surveillance was instituted in Australia to detect the presence of pandemic group A Streptococcus strains causing scarlet fever. Genomic and phylogenetic analyses indicated the presence of an Australian GAS emm12 scarlet fever isolate related to United Kingdom outbreak strains. National surveillance to monitor this pandemic is recommended
Genomic Characterization of the Guillain-Barre Syndrome-Associated Campylobacter jejuni ICDCCJ07001 Isolate
Campylobacter jejuni ICDCCJ07001 (HS:41, ST2993) was isolated from a Guillain-BarrΓ© syndrome (GBS) patient during a 36-case GBS outbreak triggered by C. jejuni infections in north China in 2007. Sequence analysis revealed that the ICDCCJ07001 genome consisted of 1,664,840 base pairs (bp) and one tetracycline resistance plasmid of 44,084 bp. The GC content was 59.29% and 1,579 and 37 CDSs were identified on the chromosome and plasmid, respectively. The ICDCCJ07001 genome was compared to C. jejuni subsp. jejuni strains 81-176, 81116, NCTC11168, RM1221 and C. jejuni subsp. doylei 269.97. The length and organization of ICDCCJ07001 was similar to that of NCTC11168, 81-176 and 81-116 except that CMLP1 had a reverse orientation in strain ICDCCJ07001. Comparative genomic analyses were also carried out between GBS-associated C. jejuni strains. Thirteen common genes were present in four GBS-associated strains and 9 genes mapped to the LOS cluster and the ICDCCJ07001_pTet (44 kb) plasmid was mosaic in structure. Thirty-seven predicted CDS in ICDCCJ07001_pTet were homologous to genes present in three virulence-associated plasmids in Campylobacter: 81-176_pTet, pCC31 and 81-176_pVir. Comparative analysis of virulence loci and virulence-associated genes indicated that the LOS biosynthesis loci of ICDCCJ07001 belonged to type A, previously reported to be associated with cases of GBS. The polysaccharide capsular biosynthesis (CPS) loci and the flagella modification (FM) loci of ICDCCJ07001 were similar to corresponding sequences of strain 260.94 of similar serotype as strain ICDCCJ07001. Other virulence-associated genes including cadF, peb1, jlpA, cdt and ciaB were conserved between the C. jejuni strains examined
Comparative Genomics of Helicobacter pylori Strains of China Associated with Different Clinical Outcome
In this study, a whole-genome CombiMatrix Custom oligonucleotide tiling microarray with 90000 probes covering six sequenced Helicobacter pylori (H. pylori) genomes was designed. This microarray was used to compare the genomic profiles of eight unsequenced strains isolated from patients with different gastroduodenal diseases in Heilongjiang province of China. Since significant genomic variation was found among these strains, an additional 76 H. pylori strains associated with different clinical outcomes were isolated from various provinces of China. These strains were tested by polymerase chain reaction to demonstrate this distinction. We identified several highly variable regions in strains associated with gastritis, gastric ulceration, and gastric cancer. These regions are associated with genes involved in the bacterial type I, type II, and type III R-M systems. They were also associated with the virB gene, which lies on the well-studied cag pathogenic island. While previous studies have reported on the diverse genetic characterization of this pathogenic island, in this study, we find that it is conserved in all strains tested by microarray. Moreover, a number of genes involved in the type IV secretion system, which is related to horizontal DNA transfer between H. pylori strains, were identified in the comparative analysis of the strain-specific genes. These findings may provide insight into new biomarkers for the prediction of gastric diseases
Comparative genomics of a Helicobacter pylori isolate from a Chinese Yunnan Naxi ethnic aborigine suggests high genetic divergence and phage insertion.
Helicobacter pylori is a common pathogen correlated with several severe digestive diseases. It has been reported that isolates associated with different geographic areas, different diseases and different individuals might have variable genomic features. Here, we describe draft genomic sequences of H. pylori strains YN4-84 and YN1-91 isolated from patients with gastritis from the Naxi and Han populations of Yunnan, China, respectively. The draft sequences were compared to 45 other publically available genomes, and a total of 1059 core genes were identified. Genes involved in restriction modification systems, type four secretion system three (TFS3) and type four secretion system four (TFS4), were identified as highly divergent. Both YN4-84 and YN1-91 harbor intact cag pathogenicity island (cagPAI) and have EPIYA-A/B/D type at the carboxyl terminal of cagA. The vacA gene type is s1m2i1. Another major finding was a 32.5-kb prophage integrated in the YN4-84 genome. The prophage shares most of its genes (30/33) with Helicobacter pylori prophage KHP30. Moreover, a 1,886 bp transposable sequence (IS605) was found in the prophage. Our results imply that the Naxi ethnic minority isolate YN4-84 and Han isolate YN1-91 belong to the hspEAsia subgroup and have diverse genome structure. The genome has been extensively modified in several regions involved in horizontal DNA transfer. The important roles played by phages in the ecology and microevolution of H. pylori were further emphasized. The current data will provide valuable information regarding the H. pylori genome based on historic human migrations and population structure
Neighbor-joining tree based on the sequence diversity of <i>cagA</i> (Left) and <i>cagPAI</i> (Right).
<p>YN4β84 is highlighted in red.</p
a. Subsystem distribution statistics of <i>Helicobacter pylori</i> strain YN4β84 generated by the rapid annotation using a subsystem technology server. b. Subsystem distribution statistics of <i>Helicobacter pylori</i> strain YN1β91 generated by the rapid annotation using a subsystem technology server.
<p>a. Subsystem distribution statistics of <i>Helicobacter pylori</i> strain YN4β84 generated by the rapid annotation using a subsystem technology server. b. Subsystem distribution statistics of <i>Helicobacter pylori</i> strain YN1β91 generated by the rapid annotation using a subsystem technology server.</p
- β¦