658 research outputs found

    FoVR: Attention-based VR Streaming through Bandwidth-limited Wireless Networks

    Full text link
    Consumer Virtual Reality (VR) has been widely used in various application areas, such as entertainment and medicine. In spite of the superb immersion experience, to enable high-quality VR on untethered mobile devices remains an extremely challenging task. The high bandwidth demands of VR streaming generally overburden a conventional wireless connection, which affects the user experience and in turn limits the usability of VR in practice. In this paper, we propose FoVR, attention-based hierarchical VR streaming through bandwidth-limited wireless networks. The design of FoVR stems from the insight that human's vision is hierarchical, so that different areas in the field of view (FoV) can be served with VR content of different qualities. By exploiting the gaze tracking capacity of the VR devices, FoVR is able to accurately predict the user's attention so that the streaming of hierarchical VR can be appropriately scheduled. In this way, FoVR significantly reduces the bandwidth cost and computing cost while keeping high quality of user experience. We implement FoVR on a commercial VR device and evaluate its performance in various scenarios. The experiment results show that FoVR reduces the bandwidth cost by 88.9% and 76.2%, respectively compared to the original VR streaming and the state-of-the-art approach

    Speech Signal Enhancement through Adaptive Wavelet Thresholding

    Get PDF
    This paper demonstrates the application of the Bionic Wavelet Transform (BWT), an adaptive wavelet transform derived from a non-linear auditory model of the cochlea, to the task of speech signal enhancement. Results, measured objectively by Signal-to-Noise ratio (SNR) and Segmental SNR (SSNR) and subjectively by Mean Opinion Score (MOS), are given for additive white Gaussian noise as well as four different types of realistic noise environments. Enhancement is accomplished through the use of thresholding on the adapted BWT coefficients, and the results are compared to a variety of speech enhancement techniques, including Ephraim Malah filtering, iterative Wiener filtering, and spectral subtraction, as well as to wavelet denoising based on a perceptually scaled wavelet packet transform decomposition. Overall results indicate that SNR and SSNR improvements for the proposed approach are comparable to those of the Ephraim Malah filter, with BWT enhancement giving the best results of all methods for the noisiest (−10 db and −5 db input SNR) conditions. Subjective measurements using MOS surveys across a variety of 0 db SNR noise conditions indicate enhancement quality competitive with but still lower than results for Ephraim Malah filtering and iterative Wiener filtering, but higher than the perceptually scaled wavelet method

    Towards Ultra-High Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-Optimization Framework

    Full text link
    Hardware accelerations of deep learning systems have been extensively investigated in industry and academia. The aim of this paper is to achieve ultra-high energy efficiency and performance for hardware implementations of deep neural networks (DNNs). An algorithm-hardware co-optimization framework is developed, which is applicable to different DNN types, sizes, and application scenarios. The algorithm part adopts the general block-circulant matrices to achieve a fine-grained tradeoff between accuracy and compression ratio. It applies to both fully-connected and convolutional layers and contains a mathematically rigorous proof of the effectiveness of the method. The proposed algorithm reduces computational complexity per layer from O(n2n^2) to O(nlognn\log n) and storage complexity from O(n2n^2) to O(nn), both for training and inference. The hardware part consists of highly efficient Field Programmable Gate Array (FPGA)-based implementations using effective reconfiguration, batch processing, deep pipelining, resource re-using, and hierarchical control. Experimental results demonstrate that the proposed framework achieves at least 152X speedup and 71X energy efficiency gain compared with IBM TrueNorth processor under the same test accuracy. It achieves at least 31X energy efficiency gain compared with the reference FPGA-based work.Comment: 6 figures, AAAI Conference on Artificial Intelligence, 201

    Run for the Group: The Impacts of Offline Teambuilding, Social Comparison and Competitive Climate on Group Physical Activity - Evidence from Mobile Fitness Apps

    Get PDF
    To encourage users to exercise more and to improve the retention, mobile fitness app developers build apps with more social interaction features on the collective level, such as allowing users to join groups to work out and holding offline group meetup events. However, literature has not provided a clear theory on the impacts of the within-group social comparison and between-group competitive climate on the participation in group exercises. Motivated by this gap, we build a conceptual framework to explain the empirical effects based on the Social Comparison theory. Based on the Teamwork theory, we also propose that offline group team building activities moderate the above relationships. We collect usage data from a mobile fitness app and conduct a series of comprehensive empirical analyses to test and validate the main and moderating effects. Our results show that both the within-group social comparison and the between- group competitive climate can improve group exercise participation. Additionally, the amount of offline activities moderates the main effects in opposite directions. Our findings help fitness app developers to better understand the impacts of offline team building activities on the participation of the online virtual groups, and further, we provide implications regarding how to make online community policies and design gamification incentive mechanism to stimulate and promote offline team building activities
    corecore