31,232 research outputs found
Does a change in debt structure matter in earnings management? the application of nonlinear panel threshold test
In this study, we apply HansenĂÂĄĂŠs (1999) nonlinear panel threshold test, the most powerful test of its kind, to investigate the relationship between debt ratio and earnings management of 474 selected Taiwan-listed companies during the September 2002 - June 2005 period. Rather than a fixed positive relation that is determined from the OLS, our empirical results strongly suggest that when a firmĂÂĄĂŠs debt ratio exceeds 46.79% and 62.17%, its debt structure changes, which in turn leads to changes in earnings management. With an increase in debt ratio, managers tend to manage earnings to a greater extent and at a higher speed. In other words, the threshold effect of debt on the relationship between debt ratio and earnings management generates an increasingly positive impact. These empirical results provide concerned investors and authorities with an enhanced understanding of earnings management, as manipulated by managers confronted with different debt structures.
Revisiting the problem of audio-based hit song prediction using convolutional neural networks
Being able to predict whether a song can be a hit has impor- tant
applications in the music industry. Although it is true that the popularity of
a song can be greatly affected by exter- nal factors such as social and
commercial influences, to which degree audio features computed from musical
signals (whom we regard as internal factors) can predict song popularity is an
interesting research question on its own. Motivated by the recent success of
deep learning techniques, we attempt to ex- tend previous work on hit song
prediction by jointly learning the audio features and prediction models using
deep learning. Specifically, we experiment with a convolutional neural net-
work model that takes the primitive mel-spectrogram as the input for feature
learning, a more advanced JYnet model that uses an external song dataset for
supervised pre-training and auto-tagging, and the combination of these two
models. We also consider the inception model to characterize audio infor-
mation in different scales. Our experiments suggest that deep structures are
indeed more accurate than shallow structures in predicting the popularity of
either Chinese or Western Pop songs in Taiwan. We also use the tags predicted
by JYnet to gain insights into the result of different models.Comment: To appear in the proceedings of 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP
Computation-Performance Optimization of Convolutional Neural Networks with Redundant Kernel Removal
Deep Convolutional Neural Networks (CNNs) are widely employed in modern
computer vision algorithms, where the input image is convolved iteratively by
many kernels to extract the knowledge behind it. However, with the depth of
convolutional layers getting deeper and deeper in recent years, the enormous
computational complexity makes it difficult to be deployed on embedded systems
with limited hardware resources. In this paper, we propose two
computation-performance optimization methods to reduce the redundant
convolution kernels of a CNN with performance and architecture constraints, and
apply it to a network for super resolution (SR). Using PSNR drop compared to
the original network as the performance criterion, our method can get the
optimal PSNR under a certain computation budget constraint. On the other hand,
our method is also capable of minimizing the computation required under a given
PSNR drop.Comment: This paper was accepted by 2018 The International Symposium on
Circuits and Systems (ISCAS
Symmetry Reduction and Boundary Modes for Fe-Chains on an s-wave Superconductor
We investigate the superconducting phase diagram and boundary modes for a
quasi-1D system formed by three Fe-Chains on an s-wave superconductor,
motivated by the recent Princeton experiment. The onsite
spin-orbit term, inter-chain diagonal hopping couplings, and magnetic disorders
in the Fe-chains are shown to be crucial for the superconducting phases, which
can be topologically trivial or nontrivial in different parameter regimes. For
the topological regime a single Majorana and multiple Andreew bound modes are
obtained in the ends of the chain, while for the trivial phase only low-energy
Andreev bound states survive. Nontrivial symmetry reduction mechanism induced
by the term, diagonal hopping couplings, and magnetic
disorder is uncovered to interpret the present results. Our study also implies
that the zero-bias peak observed in the recent experiment may or may not
reflect the Majorana zero modes in the end of the Fe-chains.Comment: 5 pages, 4 figures; some minor errors are correcte
ZOOpt: Toolbox for Derivative-Free Optimization
Recent advances of derivative-free optimization allow efficient approximating
the global optimal solutions of sophisticated functions, such as functions with
many local optima, non-differentiable and non-continuous functions. This
article describes the ZOOpt (https://github.com/eyounx/ZOOpt) toolbox that
provides efficient derivative-free solvers and are designed easy to use. ZOOpt
provides a Python package for single-thread optimization, and a light-weighted
distributed version with the help of the Julia language for Python described
functions. ZOOpt toolbox particularly focuses on optimization problems in
machine learning, addressing high-dimensional, noisy, and large-scale problems.
The toolbox is being maintained toward ready-to-use tool in real-world machine
learning tasks
- âŠ