38,379 research outputs found
Asymptotic analysis of silicon based Bragg fibers
We developed an asymptotic formalism that fully characterizes the propagation and loss properties of a Bragg fiber with finite cladding layers. The formalism is subsequently applied to miniature air-core Bragg fibers with Silicon-based cladding mirrors. The fiber performance is analyzed as a function of the Bragg cladding geometries, the core radius and the material absorption. The problems of fiber core deformation and other defects in Bragg fibers are also addressed using a finite-difference time-domain analysis and a Gaussian beam approximation, respectively
Modal analysis of Bragg onion resonators
From analysis of the high Q modes in a Bragg onion resonator with an omnidirectional reflector cladding, we establish a close analogy between such a resonator and a spherical hollow cavity in perfect metal. We demonstrate that onion resonators are ideal for applications that require a large spontaneous-emission factor Ăź, such as thresholdless lasers and single-photon devices
Real-Time Model of a Large-scale Water Distribution System
AbstractThis paper presents a real-time WDS hydraulic model combining with field measurements provided by supervisory control and data acquisition systems (SCADA). The system is composed of three parts, namely SCADA, state estimation server and client terminal. For the real-time demand estimation, a weighted least-squares scheme based recursive state estimator and local linear matrix transform algorithm are applied. The WDS model system is applied in Guangzhou city, which is one of the largest cities in China, and proves that the proposed nodal demand correction algorithms are effective for real-time WDS model
Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device
We explore the signatures of Majorana fermions in a nanowire based
topological superconductor-quantum dot-topological superconductor hybrid device
by charge transport measurements. The device is made from an epitaxially grown
InSb nanowire with two superconductor Nb contacts on a Si/SiO substrate. At
low temperatures, a quantum dot is formed in the segment of the InSb nanowire
between the two Nb contacts and the two Nb contacted segments of the InSb
nanowire show superconductivity due to the proximity effect. At zero magnetic
field, well defined Coulomb diamonds and the Kondo effect are observed in the
charge stability diagram measurements in the Coulomb blockade regime of the
quantum dot. Under the application of a finite, sufficiently strong magnetic
field, a zero-bias conductance peak structure is observed in the same Coulomb
blockade regime. It is found that the zero-bias conductance peak is present in
many consecutive Coulomb diamonds, irrespective of the even-odd parity of the
quasi-particle occupation number in the quantum dot. In addition, we find that
the zero-bias conductance peak is in most cases accompanied by two differential
conductance peaks, forming a triple-peak structure, and the separation between
the two side peaks in bias voltage shows oscillations closely correlated to the
background Coulomb conductance oscillations of the device. The observed
zero-bias conductance peak and the associated triple-peak structure are in line
with the signatures of Majorana fermion physics in a nanowire based topological
superconductor-quantum dot-topological superconductor system, in which the two
Majorana bound states adjacent to the quantum dot are hybridized into a pair of
quasi-particle states with finite energies and the other two Majorana bound
states remain as the zero-energy modes located at the two ends of the entire
InSb nanowire.Comment: 6 pages, 4 figure
Geometric stabilization of extended S=2 vortices in two-dimensional photonic lattices: theoretical analysis, numerical computation and experimental results
In this work, we focus our studies on the subject of nonlinear discrete
self-trapping of S=2 (doubly-charged) vortices in two-dimensional photonic
lattices, including theoretical analysis, numerical computation and
experimental demonstration. We revisit earlier findings about S=2 vortices with
a discrete model, and find that S=2 vortices extended over eight lattice sites
can indeed be stable (or only weakly unstable) under certain conditions, not
only for the cubic nonlinearity previously used, but also for a saturable
nonlinearity more relevant to our experiment with a biased photorefractive
nonlinear crystal. We then use the discrete analysis as a guide towards
numerically identifying stable (and unstable) vortex solutions in a more
realistic continuum model with a periodic potential. Finally, we present our
experimental observation of such geometrically extended S=2 vortex solitons in
optically induced lattices under both self-focusing and self-defocusing
nonlinearities, and show clearly that the S=2 vortex singularities are
preserved during nonlinear propagation
Normalized histogram of the state variable of first-order digital filters with two’s complement arithmetic
In this letter, the normalized histogram of the state variable of first-order digital filters with two’s complement arithmetic is investigated. When the pole of the digital filter is between 1 and 2, it is found that the possibility of occurrence of the state variable in certain region is close to zero no matter what the initial condition is. Some analytic results are given to account for this phenomenon
Many-body effects in nonlinear optical responses of 2D layered semiconductors
We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2
near its exciton resonance. The observed differential reflectance signals
exhibit signatures of strong many-body interactions including the
exciton-exciton interaction and free carrier induced band gap renormalization.
The exciton-exciton interaction results in a resonance blue shift which lasts
for the exciton lifetime (several ps), while the band gap renormalization
manifests as a resonance red shift with several tens ps lifetime. Our model
based on the many-body interactions for the nonlinear optical susceptibility
fits well the experimental observations. The power dependence of the spectra
shows that with the increase of pump power, the exciton population increases
linearly and then saturates, while the free carrier density increases
superlinearly, implying that exciton Auger recombination could be the origin of
these free carriers. Our model demonstrates a simple but efficient method for
quantitatively analyzing the spectra, and indicates the important role of
Coulomb interactions in nonlinear optical responses of such 2D materials
- …