42 research outputs found

    Improving Query-Focused Meeting Summarization with Query-Relevant Knowledge

    Full text link
    Query-Focused Meeting Summarization (QFMS) aims to generate a summary of a given meeting transcript conditioned upon a query. The main challenges for QFMS are the long input text length and sparse query-relevant information in the meeting transcript. In this paper, we propose a knowledge-enhanced two-stage framework called Knowledge-Aware Summarizer (KAS) to tackle the challenges. In the first stage, we introduce knowledge-aware scores to improve the query-relevant segment extraction. In the second stage, we incorporate query-relevant knowledge in the summary generation. Experimental results on the QMSum dataset show that our approach achieves state-of-the-art performance. Further analysis proves the competency of our methods in generating relevant and faithful summaries.Comment: AACL 2023 Finding

    Instruct-Align: Teaching Novel Languages with to LLMs through Alignment-based Cross-Lingual Instruction

    Full text link
    Instruction-tuned large language models (LLMs) have shown remarkable generalization capability over multiple tasks in multiple languages. Nevertheless, their generalization towards different languages varies especially to underrepresented languages or even to unseen languages. Prior works on adapting new languages to LLMs find that naively adapting new languages to instruction-tuned LLMs will result in catastrophic forgetting, which in turn causes the loss of multitasking ability in these LLMs. To tackle this, we propose the Instruct-Align a.k.a (IA)1^1 framework, which enables instruction-tuned LLMs to learn cross-lingual alignment between unseen and previously learned languages via alignment-based cross-lingual instruction-tuning. Our preliminary result on BLOOMZ-560M shows that (IA)1^1 is able to learn a new language effectively with only a limited amount of parallel data and at the same time prevent catastrophic forgetting by applying continual instruction-tuning through experience replay. Our work contributes to the progression of language adaptation methods for instruction-tuned LLMs and opens up the possibility of adapting underrepresented low-resource languages into existing instruction-tuned LLMs. Our code will be publicly released upon acceptance

    Towards Mitigating Hallucination in Large Language Models via Self-Reflection

    Full text link
    Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks. However, the practical deployment still faces challenges, notably the issue of "hallucination", where models generate plausible-sounding but unfaithful or nonsensical information. This issue becomes particularly critical in the medical domain due to the uncommon professional concepts and potential social risks involved. This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets. Our investigation centers on the identification and comprehension of common problematic answers, with a specific emphasis on hallucination. To tackle this challenge, we present an interactive self-reflection methodology that incorporates knowledge acquisition and answer generation. Through this feedback process, our approach steadily enhances the factuality, consistency, and entailment of the generated answers. Consequently, we harness the interactivity and multitasking ability of LLMs and produce progressively more precise and accurate answers. Experimental results on both automatic and human evaluation demonstrate the superiority of our approach in hallucination reduction compared to baselines.Comment: Accepted by the findings of EMNLP 202

    AutoPoster: A Highly Automatic and Content-aware Design System for Advertising Poster Generation

    Full text link
    Advertising posters, a form of information presentation, combine visual and linguistic modalities. Creating a poster involves multiple steps and necessitates design experience and creativity. This paper introduces AutoPoster, a highly automatic and content-aware system for generating advertising posters. With only product images and titles as inputs, AutoPoster can automatically produce posters of varying sizes through four key stages: image cleaning and retargeting, layout generation, tagline generation, and style attribute prediction. To ensure visual harmony of posters, two content-aware models are incorporated for layout and tagline generation. Moreover, we propose a novel multi-task Style Attribute Predictor (SAP) to jointly predict visual style attributes. Meanwhile, to our knowledge, we propose the first poster generation dataset that includes visual attribute annotations for over 76k posters. Qualitative and quantitative outcomes from user studies and experiments substantiate the efficacy of our system and the aesthetic superiority of the generated posters compared to other poster generation methods.Comment: Accepted for ACM MM 202

    CrossNER: Evaluating Cross-Domain Named Entity Recognition

    Full text link
    Cross-domain named entity recognition (NER) models are able to cope with the scarcity issue of NER samples in target domains. However, most of the existing NER benchmarks lack domain-specialized entity types or do not focus on a certain domain, leading to a less effective cross-domain evaluation. To address these obstacles, we introduce a cross-domain NER dataset (CrossNER), a fully-labeled collection of NER data spanning over five diverse domains with specialized entity categories for different domains. Additionally, we also provide a domain-related corpus since using it to continue pre-training language models (domain-adaptive pre-training) is effective for the domain adaptation. We then conduct comprehensive experiments to explore the effectiveness of leveraging different levels of the domain corpus and pre-training strategies to do domain-adaptive pre-training for the cross-domain task. Results show that focusing on the fractional corpus containing domain-specialized entities and utilizing a more challenging pre-training strategy in domain-adaptive pre-training are beneficial for the NER domain adaptation, and our proposed method can consistently outperform existing cross-domain NER baselines. Nevertheless, experiments also illustrate the challenge of this cross-domain NER task. We hope that our dataset and baselines will catalyze research in the NER domain adaptation area. The code and data are available at https://github.com/zliucr/CrossNER.Comment: Accepted in AAAI-202

    MusicAOG: an Energy-Based Model for Learning and Sampling a Hierarchical Representation of Symbolic Music

    Full text link
    In addressing the challenge of interpretability and generalizability of artificial music intelligence, this paper introduces a novel symbolic representation that amalgamates both explicit and implicit musical information across diverse traditions and granularities. Utilizing a hierarchical and-or graph representation, the model employs nodes and edges to encapsulate a broad spectrum of musical elements, including structures, textures, rhythms, and harmonies. This hierarchical approach expands the representability across various scales of music. This representation serves as the foundation for an energy-based model, uniquely tailored to learn musical concepts through a flexible algorithm framework relying on the minimax entropy principle. Utilizing an adapted Metropolis-Hastings sampling technique, the model enables fine-grained control over music generation. A comprehensive empirical evaluation, contrasting this novel approach with existing methodologies, manifests considerable advancements in interpretability and controllability. This study marks a substantial contribution to the fields of music analysis, composition, and computational musicology

    A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity

    Full text link
    This paper proposes a framework for quantitatively evaluating interactive LLMs such as ChatGPT using publicly available data sets. We carry out an extensive technical evaluation of ChatGPT using 23 data sets covering 8 different common NLP application tasks. We evaluate the multitask, multilingual and multi-modal aspects of ChatGPT based on these data sets and a newly designed multimodal dataset. We find that ChatGPT outperforms LLMs with zero-shot learning on most tasks and even outperforms fine-tuned models on some tasks. We find that it is better at understanding non-Latin script languages than generating them. It is able to generate multimodal content from textual prompts, via an intermediate code generation step. Moreover, we find that ChatGPT is 63.41% accurate on average in 10 different reasoning categories under logical reasoning, non-textual reasoning, and commonsense reasoning, hence making it an unreliable reasoner. It is, for example, better at deductive than inductive reasoning. ChatGPT suffers from hallucination problems like other LLMs and it generates more extrinsic hallucinations from its parametric memory as it does not have access to an external knowledge base. Finally, the interactive feature of ChatGPT enables human collaboration with the underlying LLM to improve its performance, i.e, 8% ROUGE-1 on summarization and 2% ChrF++ on machine translation, in a multi-turn "prompt engineering" fashion. We also release codebase for evaluation set extraction.Comment: 45 pages, AACL 202
    corecore