13,148 research outputs found

    Exponential stability of delayed recurrent neural networks with Markovian jumping parameters

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2006 Elsevier Ltd.In this Letter, the global exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs) with time delays and Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. The purpose of the problem addressed is to derive some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay. By employing a new Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish the desired sufficient conditions, and therefore the global exponential stability in the mean square for the delayed RNNs can be easily checked by utilizing the numerically efficient Matlab LMI toolbox, and no tuning of parameters is required. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    Effect of omega-3 fatty acid supplementation on cancer incidence, non-vascular death, and total mortality: a meta-analysis of randomized controlled trials

    Get PDF
    BACKGROUND: Omega-3 fatty acids are known to prevent cardiac death. However, previous observational studies have suggested that omega-3 fatty acids are associated with cancer risk in adults. We conducted a meta-analysis based on randomized controlled trials to evaluate the effect of omega-3 fatty acids on the risk of cancer incidence, nonvascular death, and total mortality. METHODS: In February 2013, we performed electronic searches in PubMed, EmBase, and the Cochrane Library to identify randomized controlled trials on cancer incidence, nonvascular death, and total mortality. Relative risk (RR) was used to measure the effect of omega-3 fatty acid supplementation on the risk of cancer incidence, nonvascular death, and total mortality using a random-effect model. The analysis was further stratified by factors that could affect the treatment effects. RESULTS: Of the 8,746 identified articles, we included 19 trials reporting data on 68,954 individuals. These studies reported 1,039 events of cancer, 2,439 events of nonvascular death, and 7,025 events of total mortality. Omega-3 fatty acid supplementation had no effect on cancer incidence (RR, 1.10; 95% CI: 0.97–1.24; P = 0.12), nonvascular death (RR, 1.00; 95% CI: 0.93–1.08; P = 1.00), or total mortality (RR, 0.95; 95% CI: 0.88–1.03; P = 0.24) when compared to a placebo. Subgroup analysis indicated that omega-3 fatty acid supplementation was associated with a reduction in total mortality risk if the proportion of men in the study population was more than 80%, or participants received alpha-linolenic acid. CONCLUSIONS: Omega-3 fatty acid supplementation does not have an effect on cancer incidence, nonvascular death, or total mortality

    Airborne Wireless Sensor Networks for Airplane Monitoring System

    Get PDF
    In traditional airplane monitoring system (AMS), data sensed from strain, vibration, ultrasound of structures or temperature, and humidity in cabin environment are transmitted to central data repository via wires. However, drawbacks still exist in wired AMS such as expensive installation and maintenance, and complicated wired connections. In recent years, accumulating interest has been drawn to performing AMS via airborne wireless sensor network (AWSN) system with the advantages of flexibility, low cost, and easy deployment. In this review, we present an overview of AMS and AWSN and demonstrate the requirements of AWSN for AMS particularly. Furthermore, existing wireless hardware prototypes and network communication schemes of AWSN are investigated according to these requirements. This paper will improve the understanding of how the AWSN design under AMS acquires sensor data accurately and carries out network communication efficiently, providing insights into prognostics and health management (PHM) for AMS in future

    Experimental and numerical simulation study of perforation effect of steel pipes subject to the impact loadings of ASC and LSC jets

    Get PDF
    The perforation effect of steel pipes subjected to the circular-shaped charge (ASC) and linear-shaped charge (LSC) jet were studied by experimental research, and the explicit nonlinear dynamic finite element computer code LS-DYNA was adapted to study the nonlinear responses of the steel pipes, which subjected to the impact of the two different jets, using Lagrangian-Eulerian coupling method. The deformation process and the stress of the steel pipes were described and analyzed, and the simulation results are in good agreement with the experiment data. The studies indicated that under the impact of ASC jet, the steel pipe got a circular incision and a deformation process of local perforation, flocculent shear lip forming and axial shock. Under the impact of LSC jet, the steel pipe got a ship-type incision and a deformation process of coupling of local perforation and dent, whole bending and radial shock. The formation of flocculent shear lip attributes to the radial stress concentration. Under the impact of LSC jet, the whole bending leads to the axial stretch and tearing of the cut tip, and there is a bigger radial plastic deformation area than the damage effect for the impact of ASC jet

    Research on dynamic responses of incompletely water-filled cylindrical shell subjected to explosion impact

    Get PDF
    Numerical simulation on the deformations and damages of incompletely water-filled cylindrical shells subjected to explosion impacts were carried out. The Research shows that the degree of deformation and failure of the incompletely liquid-filled cylindrical shell is smaller than that of the empty cylindrical shell in the same condition. The dynamic response of the completely water-filled cylindrical shell subjected to 75gTNT explosion impact is the same with the one of partially water-filled cylindrical shell. The anti-explosion performance of the 95 % volume water-filled cylindrical shell subjected to 200gTNT explosion impact is better. The explosion direction greatly influenced the dynamic response of partially filled-water cylindrical shell. The dynamic response of a partially water-filled cylindrical shell is approximately the same as that of the fully water-filled cylindrical shell, when the explosion direction is on one side of the water. The results show that internal pressure of water will increase when subjecting to impact loading, the anti-blast ability of tube structure significantly enhanced

    Numerical simulation on fracture mechanics behavior of high-pressure gas pipeline

    Get PDF
    The numerical simulation could help to understand the fracture mechanics behavior of high-pressure gas pipeline. The calculation results show that the internal high pressure of gas provides a driving force for crack propagation and tube wall deformation when the pipeline cracks and expands. Therefore, the rapid crack propagation tends to occur when the steel pipe is driven by high-pressure gas. In the process of steel pipe crack extension, immense internal high-pressure gas spewed from rupture and expand rapidly, compressing the air to form a series of compression wave which propagate rapidly and superpose together to form a shock wave eventually. Because the explosive wave of the pipe rupture has a high directivity, the energy distribution of gas is not uniform during the releasing process. What’s more, in pipe blasting, the longer distance, the more the surface vibration velocity decreases. In the vicinity of explosion source, the decreasing trend of the peak vibration velocity is significant. The vertical vibration velocity at the same point is larger than the longitudinal and tangential vibration speed

    Numerical analysis of vibration-isolating effect of vibration-isolating slot under buried pipe subjected to millisecond blasting

    Get PDF
    Research on vibration-isolating effects of vibration-isolating slot on buried pipe can be done by numerical method, without being disturbed by external environmental factors. It has measured data without relatively high experiment cost and analyzed the influence of some key parameters according to the results of numerical simulation. The results show that the vibration speed of the pipeline with vibration-isolating slot tends to have a larger decrease than those without vibration-isolating slot. What’s more, the homogeneous explosive charge is discrepant in different working conditions, but the vibration-isolating ratio is similar in the vibration-isolating slot with same structure parameter. The millisecond blasting is hardly affected by total explosive charge. But the blasting seismic intensity is influenced by explosive charge in each stage directly
    corecore