29,291 research outputs found

    Efficient quantum key distribution over a collective noise channel

    Full text link
    We present two efficient quantum key distribution schemes over two different collective-noise channels. The accepted hypothesis of collective noise is that photons travel inside a time window small compared to the variation of noise. Noiseless subspaces are made up of two Bell states and the spatial degree of freedom is introduced to form two nonorthogonal bases. Although these protocols resort to entangled states for encoding the key bit, the receiver is only required to perform single-particle product measurements and there is no basis mismatch. Moreover, the detection is passive as the receiver does not switch his measurements between two conjugate measurement bases to get the key.Comment: 6 pages, 1 figure; the revised version of the paper published in Phys. Rev. A 78, 022321 (2008). Some negligible errors on the error rates of eavesdropping check are correcte

    Improving the security of secure direct communication based on secret transmitting order of particles

    Get PDF
    We analyzed the security of the secure direct communication protocol based on secret transmitting order of particles recently proposed by Zhu, Xia, Fan, and Zhang [Phys. Rev. A 73, 022338 (2006)], and found that this scheme is insecure if an eavesdropper, say Eve, wants to steal the secret message with Trojan horse attack strategies. The vital loophole in this scheme is that the two authorized users check the security of their quantum channel only once. Eve can insert another spy photon, an invisible photon or a delay one in each photon which the sender Alice sends to the receiver Bob, and capture the spy photon when it returns from Bob to Alice. After the authorized users check the security, Eve can obtain the secret message according to the information about the transmitting order published by Bob. Finally, we present a possible improvement of this protocol.Comment: 4 pages, no figur

    Non-Hermitian coherent coupling of nanomagnets by exchange spin waves

    Get PDF
    Non-Hermitian physics has recently attracted much attention in optics and photonics. Less explored is non-Hermitian magnonics that provides opportunities to take advantage of the inevitable dissipation of magnons or spin waves in magnetic systems. Here we demonstrate non-Hermitian coherent coupling of two distant nanomagnets by fast spin waves with sub-50 nm wavelengths. Magnons in two nanomagnets are unidirectionally phase-locked with phase shifts controlled by magnon spin torque and spin-wave propagation. Our results are attractive for analog neuromorphic computing that requires unidirectional information transmission

    Developing a Hybrid Dictionary-based Bio-entity Recognition Technique

    Get PDF
    Background: Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. Methods: This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. Results: The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. Conclusions: The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall.X1133Ysciescopu

    Fire responses and resistance of concrete-filled steel tubular frame structures

    Get PDF
    This paper presents the results of dynamic responses and fire resistance of concretefilled steel tubular (CFST) frame structures in fire conditions by using non-linear finite element method. Both strength and stability criteria are considered in the collapse analysis. The frame structures are constructed with circular CFST columns and steel beams of I-sections. In order to validate the finite element solutions, the numerical results are compared with those from a fire resistance test on CFST columns. The finite element model is then adopted to simulate the behaviour of frame structures in fire. The structural responses of the frames, including critical temperature and fire-resisting limit time, are obtained for the ISO-834 standard fire. Parametric studies are carried out to show their influence on the load capacity of the frame structures in fire. Suggestions and recommendations are presented for possible adoption in future construction and design of these structures

    Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time

    Full text link
    Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model under the Newton-Hooke contraction of the BdSBdS spacetime with respect to the transformation group, algebra and geometry. It is shown that in Newton-Hooke space-time, there are inertial-type coordinate systems and inertial-type observers, which move along straight lines with uniform velocity. And they are invariant under the Newton-Hooke group. In order to determine uniquely the Newton-Hooke limit, we propose the Galilei-Hooke's relativity principle as well as the postulate on Newton-Hooke universal time. All results are readily extended to the Newton-Hooke model as a contraction of Beltrami-anti-de Sitter spacetime with negative cosmological constant.Comment: 25 pages, 3 figures; some misprints correcte

    Uncovering Regulatory Affairs Complexity in Medical Products: A Qualitative Assessment Utilizing Open Coding and Natural Language Processing (NLP)

    Full text link
    This study investigates the complexity of regulatory affairs in the medical device industry, a critical factor influencing market access and patient care. Through qualitative research, we sought expert insights to understand the factors contributing to this complexity. The study involved semi-structured interviews with 28 professionals from medical device companies, specializing in various aspects of regulatory affairs. These interviews were analyzed using open coding and Natural Language Processing (NLP) techniques. The findings reveal key sources of complexity within the regulatory landscape, divided into five domains: (A) Regulatory language complexity, (B) Intricacies within the regulatory process, (C) Global-level complexities, (D) Database-related considerations, and (E) Product-level issues. The participants highlighted the need for strategies to streamline regulatory compliance, enhance interactions between regulatory bodies and industry players, and develop adaptable frameworks for rapid technological advancements. Emphasizing interdisciplinary collaboration and increased transparency, the study concludes that these elements are vital for establishing coherent and effective regulatory procedures in the medical device sector

    Nearly Massless Electrons in the Silicon Interface with a Metal Film

    Full text link
    We demonstrate the realization of nearly massless electrons in the most widely used device material, silicon, at the interface with a metal film. Using angle-resolved photoemission, we found that the surface band of a monolayer lead film drives a hole band of the Si inversion layer formed at the interface with the film to have nearly linear dispersion with an effective mass about 20 times lighter than bulk Si and comparable to graphene. The reduction of mass can be accounted for by repulsive interaction between neighboring bands of the metal film and Si substrate. Our result suggests a promising way to take advantage of massless carriers in silicon-based thin-film devices, which can also be applied for various other semiconductor devices.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter
    corecore