155 research outputs found
Development of an LC-MS/MS Method for the Assessment of Selected Active Pharmaceuticals and Metabolites in Wastewaters of a Swiss University Hospital
A multi-residue analytical method was developed and validated for the quantification of 11 selected active pharmaceutical ingredients (API) and 2 human metabolites in hospital effluents using solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS). Targeted analytes belong to different therapeutic classes: non steroidal anti-inflammatory drugs (NSAID), analgesics, antibiotics and psychiatric drugs. Solid-phase extraction recoveries ranged between 21 and 101% for the selected API. Calibration curves were built with 6 standard
samples prepared in ultrapure water ranging from 0.05 to 10 ?g/L and showed regression coefficients above 0.994. The instrumental detection limits (IDL) varied between 0.05 and 5 ?g/L, and the method detection limits (MDL) between 0.1 and 100 ng/L. Precision of the method, evaluated
with spiked water samples at four different concentrations, varied between 84 and 117% for all compounds and an overall variability below 20%, with the exception of carbamazepine (71–123%). Except for two compounds, recoveries of spiked hospital wastewaters at four different concentrations
(0.1, 1, 10 and 100 ?g/L) varied between 44 and 133%, with relative standard deviation (RSD) between 0.6 and 28.5%. The evaluation of the matrix effects showed that diluted samples exhibit lower signal suppression. Analysis of effluent samples from a Swiss university hospital resulted in
a mean detection frequency of 92% for the selected compounds, with concentrations up to 1535 ?g/L for the analgesic paracetamol
Phenotyping of CYP450 in human liver microsomes using the cocktail approach
The cocktail approach is an advantageous strategy used to monitor the activities of several cytochromes P450 (CYPs) in a single test to increase the throughput of in vitro phenotyping studies. In this study, a cocktail mixture was developed with eight CYP-specific probe substrates to simultaneously evaluate the activity of the most important CYPs, namely, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and the CYP3A subfamily. After cocktail incubation in the presence of human liver microsomes (HLMs), the eight selected substrates and their specific metabolites were analyzed by ultra-high-pressure liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry. Qualitative and quantitative data were simultaneously acquired to produce an overview of the extended phase I biotransformation routes for each probe substrate in the HLMs and to generate phenotypic profiles of various HLMs. A comparison of the cocktail strategy with an individual substrate assay for each CYP produced similar results. Moreover, the cocktail was tested on HLMs with different allelic variants and/or in the presence of selective inhibitors. The results were in agreement with the genetic polymorphisms of the CYPs and the expected effect of the alterations. All of these experiments confirmed the reliability of this cocktail assay for phenotyping of the microsomal CYPs
Intraocular penetration of penciclovir after oral administration of famciclovir: a population pharmacokinetic model
Objectives We developed a population model that describes the ocular penetration and pharmacokinetics of penciclovir in human aqueous humour and plasma after oral administration of famciclovir. Methods Fifty-three patients undergoing cataract surgery received a single oral dose of 500 mg of famciclovir prior to surgery. Concentrations of penciclovir in both plasma and aqueous humour were measured by HPLC with fluorescence detection. Concentrations in plasma and aqueous humour were fitted using a two-compartment model (NONMEM software). Inter-individual and intra-individual variabilities were quantified and the influence of demographics and physiopathological and environmental variables on penciclovir pharmacokinetics was explored. Results Drug concentrations were fitted using a two-compartment, open model with first-order transfer rates between plasma and aqueous humour compartments. Among tested covariates, creatinine clearance, co-intake of angiotensin-converting enzyme inhibitors and body weight significantly influenced penciclovir pharmacokinetics. Plasma clearance was 22.8 ± 9.1 L/h and clearance from the aqueous humour was 8.2 × 10−5 L/h. AUCs were 25.4 ± 10.2 and 6.6 ± 1.8 μg · h/mL in plasma and aqueous humour, respectively, yielding a penetration ratio of 0.28 ± 0.06. Simulated concentrations in the aqueous humour after administration of 500 mg of famciclovir three times daily were in the range of values required for 50% growth inhibition of non-resistant strains of the herpes zoster virus family. Conclusions Plasma and aqueous penciclovir concentrations showed significant variability that could only be partially explained by renal function, body weight and comedication. Concentrations in the aqueous humour were much lower than in plasma, suggesting that factors in the blood-aqueous humour barrier might prevent its ocular penetration or that redistribution occurs in other ocular compartment
Impact of enantiomer-specific changes in pharmacokinetics between infants and adults on the target concentration of racemic ketorolac– a pooled analysis
Aims Ketorolac is a non-steroidal anti-inflammatory racemic drug with analgesic effects only attributed to its S-enantiomer. The aim of this study is to quantify enantiomer-specific maturational pharmacokinetics (PK) of ketorolac and investigate if the contribution of both enantiomers to the total ketorolac concentration remains equal between infants and adults or if a change in target racemic concentration should be considered when applied to infants. Methods Data were pooled from 5 different studies in adults, children, and infants, with 1020 plasma concentrations following single intravenous ketorolac administration. An allometry-based enantiomer-specific population PK model was developed with NONMEM 7.3. Simulations were performed in typical adults and infants to investigate differences in S- and R-ketorolac exposure. Results S- and R-ketorolac PK were best described with a 3- and a 2-compartment model respectively. The allometry-based PK parameters accounted for changes between populations. No maturation function of ketorolac clearance could be identified. All model parameters were estimated with adequate precision (relative standard errorPeer reviewe
Uptake/Efflux Transport of Tramadol Enantiomers and O-Desmethyl-Tramadol: Focus on P-Glycoprotein
The analgesic effect of tramadol (TMD) results from the monoaminergic effect of its two enantiomers, (+)-TMD and (-)-TMD as well as its opioid metabolite (+)-O-desmethyl-tramadol (M1). P-glycoprotein (P-gp) might be of importance in the analgesic and tolerability profile variability of TMD. Our study investigated the involvement of P-gp in the transepithelial transport of (+)-TMD, (-)-TMD and M1, using a Caco-2 cell monolayer model. The bidirectional transport of racemic TMD and M1 (1-100 microM) across the monolayers was investigated at two pH conditions (pH 6.8/7.4 and 7.4/7.4) in the presence and absence of P-gp inhibitor cyclosporine A (10 microM) and assessed with the more potent and specific P-gp inhibitor GF120918 (4 microM). Analytical quantification was performed by liquid chromatography coupled to the fluorescence detector. A net secretion of (+)-TMD, (-)-TMD and M1 was observed when a pH gradient was applied (TR: P(app)(B - A)/P(app)(A - B): 1.8-2.7; P < 0.05). However, the bidirectional transport of all compounds was equal in the non-gradient system. In the presence of P-gp inhibitors, a slight but significant increase of secretory flux was observed (up to 26%; P < 0.05) at both pH conditions. In conclusion, (+)-TMD, (-)-TMD and M1 are not P-gp substrates. However, proton-based efflux pumps may be involved in limiting the gastrointestinal absorption of TMD enantiomers as well as enhancing TMD enantiomers and M1 renal excretion. A possible involvement of uptake carriers in the transepithelial transport of TMD enantiomers and M1 is suggested
Optimized low-dose combinatorial drug treatment boosts selectivity and efficacy of colorectal carcinoma treatment.
The current standard of care for colorectal cancer (CRC) is a combination of chemotherapeutics, often supplemented with targeted biological drugs. An urgent need exists for improved drug efficacy and minimized side effects, especially at late-stage disease. We employed the phenotypically driven therapeutically guided multidrug optimization (TGMO) technology to identify optimized drug combinations (ODCs) in CRC. We identified low-dose synergistic and selective ODCs for a panel of six human CRC cell lines also active in heterotypic 3D co-culture models. Transcriptome sequencing and phosphoproteome analyses showed that the mechanisms of action of these ODCs converged toward MAP kinase signaling and cell cycle inhibition. Two cell-specific ODCs were translated to in vivo mouse models. The ODCs reduced tumor growth by ~80%, outperforming standard chemotherapy (FOLFOX). No toxicity was observed for the ODCs, while significant side effects were induced in the group treated with FOLFOX therapy. Identified ODCs demonstrated significantly enhanced bioavailability of the individual components. Finally, ODCs were also active in primary cells from CRC patient tumor tissues. Taken together, we show that the TGMO technology efficiently identifies selective and potent low-dose drug combinations, optimized regardless of tumor mutation status, outperforming conventional chemotherapy
Personalized Medicine: Pharmacokinetics
The “one-size fits all” model that has been used for decades is now replaced by the concept of the “right dose of the right drug for the right patient” [...
An extensive cocktail approach for rapid risk assessment of in vitro CYP450 direct reversible inhibition by xenobiotic exposure
Acute exposure to environmental factors strongly affects the metabolic activity of cytochrome P450 (P450). As a consequence, the risk of interaction could be increased, modifying the clinical outcomes of a medication. Because toxic agents cannot be administered to humans for ethical reasons, in vitro approaches are therefore essential to evaluate their impact on P450 activities. In thiswork, an extensive cocktail mixturewas developed and validated for in vitro P450 inhibition studies using human liver microsomes (HLM). The cocktail comprised eleven P450-specific probe substrates to simultaneously assess the activities of the following isoforms: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2 and subfamily 3A. The high selectivity and sensitivity of the developed UHPLC-MS/MS methodwere critical for the success of this methodology, whose main advantages are: (i) the use of eleven probe substrates with minimized interactions, (ii) a low HLMconcentration, (iii) fast incubation (5 min) and (iv) the use of metabolic ratios as microsomal P450 activities markers. This cocktail approach was successfully validated by comparing the obtained IC50 values for model inhibitorswith those generatedwith the conventional single probe methods. Accordingly, reliable inhibition values could be generated 10-fold faster using a 10-fold smaller amount of HLM compared to individual assays. This approach was applied to assess the P450 inhibition potential of widespread insecticides, namely, chlorpyrifos, fenitrothion, methylparathion and profenofos. In all cases, P450 2B6 was the most affected with IC50 values in the nanomolar range. For the first time, mixtures of these four insecticides incubated at lowconcentrations showed a cumulative inhibitory in vitro effect on P450 2B6
Physiologically-based pharmacokinetic modeling for the prediction of CYP2D6-mediated gene-drug-drug interactions
The aim of this work was to predict the extent of Cytochrome P450 2D6 (CYP2D6)-mediated drug-drug interactions (DDIs) in different CYP2D6 genotypes using physiologically-based pharmacokinetic (PBPK) modeling. Following the development of a new duloxetine model and optimization of a paroxetine model, the effect of genetic polymorphisms on CYP2D6-mediated intrinsic clearances of dextromethorphan, duloxetine, and paroxetine was estimated from rich pharmacokinetic profiles in activity score (AS)1 and AS2 subjects. We obtained good predictions for the dextromethorphan-duloxetine interaction (Ratio of predicted over observed area under the curve (AUC) ratio (Rpred/obs ) 1.38-1.43). Similarly, the effect of genotype was well predicted, with an increase of area under the curve ratio of 28% in AS2 subjects when compared with AS1 (observed, 33%). Despite an approximately twofold underprediction of the dextromethorphan-paroxetine interaction, an Rpred/obs of 0.71 was obtained for the effect of genotype on the area under the curve ratio. Therefore, PBPK modeling can be successfully used to predict gene-drug-drug interactions (GDDIs). Based on these promising results, a workflow is suggested for the generic evaluation of GDDIs and DDIs that can be applied in other situations
- …