161 research outputs found

    Optimal application of compressive palatal stents following mesiodens removal in pediatric patients:a Randomized Controlled Trial

    Get PDF
    There is no scientific evidence supporting the choice of a palatal stent in patients who underwent removal of an impacted supernumerary tooth. We aimed to investigate the effects of palatal stents in patients who underwent supernumerary tooth removal through a palatal approach and to suggest the optimal stent thickness and material. We recruited 144 patients who underwent extraction of a supernumerary tooth between the maxillary anterior teeth. Subjects were assigned to a control group (CG) or one of four compressive palatal stent groups (CPSGs) classified by the thickness and material of the thermoplastic acrylic stent used. Palatal gingival swelling and objective indices (healing, oral hygiene, gingival, and plaque) were evaluated before surgery and on postoperative days (PODs) 3, 7, and 14; pain/discomfort and the Child Oral Health Impact Profile (COHIP) were assessed as subjective indices of the effects of the stent. The CPSGs showed faster healing than did the CG on PODs 7 (P<0.001) and 14 (P=0.043); swelling was measured by 1.64±0.88 mm and 4.52±0.39 mm, respectively. Although swelling was least in the 4-mm hard group (0.92±0.33 mm), the difference compared with that in the 2-mm hard group (1.01±0.18 mm) was not significant (P=0.077). The CPSGs showed better COHIP (P<0.001-0.036) and pain scores (P<0.001) than did the CG on PODs 1-3. Compressive palatal stents reduce discomfort by decreasing pain and alleviating swelling. Although a stent is effective regardless of its thickness and material, 2-mm hard stents maximized such positive effects with minimal discomfort

    The effects of ambient He pressure on the oxygen density of Er-doped SiO x thin films grown by laser ablation of a Si:Er 2 O 3 target

    Get PDF
    Abstract Er-doped SiO x thin films were fabricated by laser ablation of a Si:Er 2 O 3 target in He atmosphere. We have measured the photoluminescence (PL) at 1.54 mm for the films grown at different He pressures and found that the oxygen density of the grown film that strongly influences the PL intensity is highly correlated with the ambient He pressure. This manifests that oxygen density of the film can be controlled in an inert atmosphere to maximize PL intensity when we adopt pulsed laser deposition (PLD) technique to deposit Er-doped SiO x thin films. Also, we have examined the temperature dependence of PL and observed that the thermal quenching is greatly reduced for the PLD-grown films.

    Effects of Physically Effective Neutral Detergent Fiber Content on Intake, Digestibility, and Chewing Activity in Fattening Heifer Fed Total Mixed Ration

    Get PDF
    The objective of this study was to determine the effects of physically effective neutral detergent fiber (peNDF) content in total mixed ration (TMR) on dry matter intake, digestibility, and chewing activity in fattening Hanwoo (Bos taurus coreanae) heifers. The experiment was designed as a replicated 3×3 Latin square using 12 heifers. Fattening heifers were offered one of three diets [high (T1), medium (T2), and low (T3) peNDF] obtained by different mixing times (3, 10, and 25 min) for the same TMR feed. The peNDF content of TMR was determined by multiplying the proportion of dry matter retained by a 1.18 mm-screen in a Penn State Particle Separator by the dietary NDF content. The peNDF1.18 content was 30.36%, 29.20%, and 27.50% for the T1, T2, and T3 diets, respectively (p<0.05). Dry matter intake was not affected by peNDF content in TMR. Total weight gain in T1 group was significantly higher (p<0.05) than in T2 and T3 groups. However, weight gain did not differ between T2 and T3 groups. The feed conversion ratio decreased with an increase in the peNDF content (T1: 12.18, T2: 14.17, and T3: 14.01 g/g). An increase in the peNDF content of TMR was associated with a linear increase in the digestibility of dry matter, crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber (p<0.05). Also, an increase in peNDF content of the TMR resulted in a linear increase in the number of chews in eating and ruminating (p<0.05), and consequently in the number of total chews (p<0.05). These results indicate that peNDF content affects digestibility and chewing activity. Consequently, the peNDF content of TMR should be considered for improving feed efficiency, digestibility, body weight gain, and performance in fattening heifers

    Genetic assessment of pathogenic germline alterations in lysosomal genes among Asian patients with pancreatic ductal adenocarcinoma

    Get PDF
    Background Lysosomes are closely linked to autophagic activity, which plays a vital role in pancreatic ductal adenocarcinoma (PDAC) biology. The survival of PDAC patients is still poor, and the identification of novel genetic factors for prognosis and treatment is highly required to prevent PDAC-related deaths. This study investigated the germline variants related to lysosomal dysfunction in patients with PDAC and to analyze whether they contribute to the development of PDAC. Methods The germline putative pathogenic variants (PPV) in genes involved in lysosomal storage disease (LSD) was compared between patients with PDAC (n = 418) and healthy controls (n = 845) using targeted panel and whole-exome sequencing. Furthermore, pancreatic organoids from wild-type and KrasG12D mice were used to evaluate the effect of lysosomal dysfunction on PDAC development. RNA sequencing (RNA-seq) analysis was performed with established PDAC patient-derived organoids (PDOs) according to the PPV status. Results The PPV in LSD-related genes was higher in patients with PDAC than in healthy controls (8.13 vs. 4.26%, Log2 OR = 1.65, P = 3.08 × 10–3). The PPV carriers of LSD-related genes with PDAC were significantly younger than the non-carriers (mean age 61.5 vs. 65.3 years, P = 0.031). We further studied a variant of the lysosomal enzyme, galactosylceramidase (GALC), which was the most frequently detected LSD variant in our cohort. Autophagolysosomal activity was hampered when GALC was downregulated, which was accompanied by paradoxically elevated autophagic flux. Furthermore, the number of proliferating Ki-67+ cells increased significantly in pancreatic organoids derived from Galc knockout KrasG12D mice. Moreover, GALC PPV carriers tended to show drug resistance in both PDAC cell line and PDAC PDO, and RNA-seq analysis revealed that various metabolism and gene repair pathways were upregulated in PDAC PDOs harboring a GALC variant. Conclusions Genetically defined lysosomal dysfunction is frequently observed in patients with young-onset PDAC. This might contribute to PDAC development by altering metabolism and impairing autophagolysosomal activity, which could be potentially implicated in therapeutic applications for PDAC.This work was supported by the National Research Foundation of Korea funded by the Korean Government (MSIT) (Grant No. NRF-2021R1A2C3005360) (YK) and the Ministry of Health & Welfare, Republic of Korea (Grant No. HI18C1876) (SSY). This study was supported by the Future Medicine 20 × 30 Project of the Samsung Medical Center (Grant No. SMX1230041, SMO1230021) and a Samsung Medical Center Research and Development Grant (Grant No. SMO1230661) (JKP)

    Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase I clinical trial

    Get PDF
    Backgrounds: Alzheimer's disease is the most common cause of dementia, and currently, there is no disease-modifying treatment. Favorable functional outcomes and reduction of amyloid levels were observed following transplantation of mesenchymal stem cells (MSCs) in animal studies. Objectives: We conducted a phase I clinical trial in nine patients with mild-to-moderate Alzheimer's disease dementia to evaluate the safety and dose-limiting toxicity of three repeated intracerebroventricular injections of human umbilical cord blood-derived MSCs (hUCB-MSCs). Methods: We recruited nine mild-to-moderate Alzheimer's disease dementia patients from Samsung Medical Center, Seoul, Republic of Korea. Four weeks prior to MSC administration, the Ommaya reservoir was implanted into the right lateral ventricle of the patients. Three patients received a low dose (1.0 × 107 cells/2 mL), and six patients received a high dose (3.0 × 107 cells/2 mL) of hUCB-MSCs. Three repeated injections of MSCs were performed (4-week intervals) in all nine patients. These patients were followed up to 12 weeks after the first hUCB-MSC injection and an additional 36 months in the extended observation study. Results: After hUCB-MSC injection, the most common adverse event was fever (n = 9) followed by headache (n = 7), nausea (n = 5), and vomiting (n = 4), which all subsided within 36 h. There were three serious adverse events in two participants that were considered to have arisen from the investigational product. Fever in a low dose participant and nausea with vomiting in another low dose participant each required extended hospitalization by a day. There were no dose-limiting toxicities. Five participants completed the 36-month extended observation study, and no further serious adverse events were observed. Conclusions: Three repeated administrations of hUCB-MSCs into the lateral ventricle via an Ommaya reservoir were feasible, relatively and sufficiently safe, and well-tolerated. Currently, we are undergoing an extended follow-up study for those who participated in a phase IIa trial where upon completion, we hope to gain a deeper understanding of the clinical efficacy of MSC AD therapy

    Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation.</p> <p>Methods</p> <p>Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6). The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [<sup>3</sup>H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of <it>n</it>-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay.</p> <p>Results</p> <p>In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma) that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma) without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET/PTC.</p> <p>Conclusion</p> <p>These findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.</p
    corecore