10,040 research outputs found

    Angle Dependence of Landau Level Spectrum in Twisted Bilayer Graphene

    Full text link
    In the context of the low energy effective theory, the exact Landau level spectrum of quasiparticles in twisted bilayer graphene with small twist angle is analytically obtained by spheroidal eigenvalues. We analyze the dependence of the Landau levels on the twist angle to find the points, where the two-fold degeneracy for twist angles is lifted in the nonzero modes and below/above which massive/massless fermion pictures become valid. In the perpendicular magnetic field of 10\,T, the degeneracy is removed at θdeg3\theta_{{\rm deg}}\sim 3^\circ %angles around 3 degrees for a few low levels, specifically, θdeg2.56\theta_{\rm deg}\simeq 2.56^\circ for the first pair of nonzero levels and θdeg3.50\theta_{\rm deg}\simeq 3.50^\circ for the next pair. Massive quasiparticle appears at θ<θc1.17\theta<\theta_{{\rm c}}\simeq 1.17^\circ in 10\,T, %angles less than 1.17 degrees. which match perfectly with the recent experimental results. Since our analysis is applicable to the cases of arbitrary constant magnetic fields, we make predictions for the same experiment performed in arbitrary constant magnetic fields, e.g., for B=40\,T we get θc2.34\theta_{\rm c}\simeq 2.34^\circ and the sequence of angles θdeg=5.11,7.01,8.42,...\theta_{\rm deg} = 5.11, 7.01, 8.42,... for the pairs of nonzero energy levels. The symmetry restoration mechanism behind the massive/massless transition is conjectured to be a tunneling (instanton) in momentum space.Comment: 8 pages, 7 figures, version to appear in PR

    Empirical distributions of galactic λ\lambda spin parameters from the SDSS

    Full text link
    Using simple dimensional arguments for both spiral and elliptical galaxies, we present formulas to derive an estimate of the halo spin parameter λ\lambda for any real galaxy, in terms of common observational parameters. This allows a rough estimate of λ\lambda, which we apply to a large volume limited sample of galaxies taken from the SDSS data base. The large numbers involved (11,597) allow the derivation of reliable λ\lambda distributions, as signal adds up significantly in spite of the errors in the inferences for particular galaxies. We find that if the observed distribution of λ\lambda is modeled with a log-normal function, as often done for this distribution in dark matter halos that appear in cosmological simulations, we obtain parameters λ0=0.04±0.005\lambda_{0}=0.04 \pm 0.005 and σλ=0.51±0.05\sigma_{\lambda}=0.51 \pm 0.05, interestingly consistent with values derived from simulations. For spirals, we find a good correlation between empirical values of λ\lambda and visually assigned Hubble types, highlighting the potential of this physical parameter as an objective classification tool.Comment: 8 pages, 6 figures, expanded final version, MNRAS (in press

    Intrusion Prevention And Detection in Small to Medium-Sized Enterprises

    Get PDF
    This paper will examine in depth the reluctance of small to medium-sized enterprises (SMEs) to implement cybersecurity measures amidst the growing threat of cyberattacks. Small businesses encompass the vast majority of for profit and nonprofit organizations in the world. Due to the growing connectedness of the global economy through the Internet and e-business, the reluctance of SMEs to invest in security measures threatens the very existence of many organizations and their partners. The detection and defense against attacks through intrusion detection systems (IDS) and intrusion prevention systems (IPS) are two solutions that assist in detecting and deflecting potential breaches of security. An extensive look at how both IDS and IPS can provide meaningful solutions to SMEs through their visibility and control measures (including their unique characteristics, applications, and limitations) will be explored

    Superconducting transition of a two-dimensional Josephson junction array in weak magnetic fields

    Full text link
    The superconducting transition of a two-dimensional (2D) Josephson junction array exposed to weak magnetic fields has been studied experimentally. Resistance measurements reveal a superconducting-resistive phase boundary in serious disagreement with the theoretical and numerical expectations. Critical scaling analyses of the IVIV characteristics indicate contrary to the expectations that the superconducting-to-resistive transition in weak magnetic fields is associated with a melting transition of magnetic-field-induced vortices directly from a pinned-solid phase to a liquid phase. The expected depinning transition of vortices from a pinned-solid phase to an intermediate floating-solid phase was not observed. We discuss effects of the disorder-induced random pinning potential on phase transitions of vortices in a 2D Josephson junction array.Comment: 9 pages, 7 figures (EPS+JPG format), RevTeX

    X-ray induced electronic structure change in CuIr2_2S4_4

    Full text link
    The electronic structure of CuIr2_2S4_4 has been investigated using various bulk-sensitive x-ray spectroscopic methods near the Ir L3L_3-edge: resonant inelastic x-ray scattering (RIXS), x-ray absorption spectroscopy in the partial fluorescence yield (PFY-XAS) mode, and resonant x-ray emission spectroscopy (RXES). A strong RIXS signal (0.75 eV) resulting from a charge-density-wave gap opening is observed below the metal-insulator transition temperature of 230 K. The resultant modification of electronic structure is consistent with the density functional theory prediction. In the spin- and charge- dimer disordered phase induced by x-ray irradiation below 50 K, we find that a broad peak around 0.4 eV appears in the RIXS spectrum.Comment: 4 pages and 4 figure

    Criterion for transformation of transverse domain wall to vortex or antivortex wall in soft magnetic thin-film nanostripes

    Get PDF
    We report on the criterion for the dynamic transformation of the internal structure of moving domain walls (DWs) in soft magnetic thin-film nanostripes above the Walker threshold field, Hw. In order for the process of transformation from transverse wall (TW) to vortex wall (VW) or antivortex wall (AVW) occurs, the edge-soliton core of the TW-type DW should grow sufficiently to the full width at half maximum of the out-of-plane magnetizations of the core area of the stabilized vortex (or antivortex) by moving inward along the transverse (width) direction. Upon completion of the nucleation of the vortex (antivortex) core, the VW (AVW) is stabilized, and then its core accompanies the gyrotropic motion in a potential well (hill) of a given nanostripe. Field strengths exceeding the Hw, which is the onset field of DW velocity breakdown, are not sufficient but necessary conditions for dynamic DW transformation

    Higgs Structures of Dyonic Instantons

    Full text link
    We study Higgs field configurations of dyonic instantons in spontaneously broken (4+1)-dimensional Yang-Mills theory. The adjoint scalar field solutions to the covariant Laplace equation in the ADHM instanton background are constructed in general noncanonical basis, and they are used to study explicitly the Higgs field configurations of dyonic instantons when the gauge fields are taken by Jackiw-Nohl-Rebbi instanton solutions. For these solutions corresponding to small instanton number we then consider in some detail the zero locus of the Higgs field, which describes the cross section of supertubes connecting parallel D4-branes in string theory. Also the information on the Higgs zeroes is used to discuss the residual gauge freedom concerning the Jackiw-Nohl-Rebbi solutions.Comment: 1+27 pages, 6 figure

    In-situ fabrication of cobalt-doped SrFe2As2 thin films by using pulsed laser deposition with excimer laser

    Full text link
    The remarkably high superconducting transition temperature and upper critical field of iron(Fe)-based layered superconductors, despite ferromagnetic material base, open the prospect for superconducting electronics. However, success in superconducting electronics has been limited because of difficulties in fabricating high-quality thin films. We report the growth of high-quality c-axis-oriented cobalt(Co)-doped SrFe2As2 thin films with bulk superconductivity by using an in-situ pulsed laser deposition technique with a 248-nm-wavelength KrF excimer laser and an arsenic(As)-rich phase target. The temperature and field dependences of the magnetization showing strong diamagnetism and transport critical current density with superior Jc-H performance are reported. These results provide necessary information for practical applications of Fe-based superconductors.Comment: 8 pages, 3figures. to be published at Appl. Phys. Let

    Resonant inelastic x-ray scattering study of holon-antiholon continuum in SrCuO2

    Full text link
    We report a resonant inelastic x-ray scattering study of charge excitations in the quasi-one-dimensional Mott insulator SrCuO2. We observe a continuum of low-energy excitations, in which a highly dispersive feature with a large sinusoidal dispersion (~1.1 eV) resides. We have also measured the optical conductivity, and studied the dynamic response of the extended Hubbard model with realistic parameters, using a dynamical density-matrix renormalization group method. In contrast to earlier work, we do not find a long-lived exciton, but rather these results suggest that the excitation spectrum comprises a holon-antiholon continuum together with a broad resonance.Comment: Final version to be published in Phys. Rev. Let
    corecore