495 research outputs found

    Histone deacetylase inhibitors in Hodgkin lymphoma

    Get PDF
    Although Hodgkin lymphoma (HL) is considered one of the most curable human cancers, the treatment of patients with relapsed and refractory disease, especially those who relapse after autologous stem cell transplantation, remains challenging. Furthermore, because of the young age of these patients, the impact of early mortality on the number of years lost from productive life is remarkable. Patients with relapsed HL post stem cell transplantation currently have no curative therapy, and are in need for new drugs and novel treatment strategies. While no new drugs have been approved for the treatment of patients with HL in more than three decades, several new agents are demonstrating promising results in early clinical trials. This review will focus on the emerging role of histone deacetylase inhibitors in patients with relapsed HL

    Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells

    Get PDF
    Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. © 2013 Song et al

    Performance evaluation of five ELISA kits for detecting anti-SARS-COV-2 IgG antibodies

    Get PDF
    Objectives: To evaluate and compare the performances of five commercial ELISA assays (EDI, AnshLabs, Dia.Pro, NovaTec, and Lionex) for detecting anti-SARS-CoV-2 IgG. / Methods: Seventy negative control samples (collected before the COVID-19 pandemic) and samples from 101 RT-PCR-confirmed SARS-CoV-2 patients (collected at different time points from symptom onset: ≤7, 8–14 and >14 days) were used to compare the sensitivity, specificity, agreement, and positive and negative predictive values of each assay with RT-PCR. A concordance assessment between the five assays was also conducted. Cross-reactivity with other HCoV, non-HCoV respiratory viruses, non-respiratory viruses, and nuclear antigens was investigated. / Results: Lionex showed the highest specificity (98.6%; 95% CI 92.3–99.8), followed by EDI and Dia.Pro (97.1%; 95% CI 90.2–99.2), NovaTec (85.7%; 95% CI 75.7–92.1), then AnshLabs (75.7%; 95% CI 64.5–84.2). All ELISA kits cross-reacted with one anti-MERS IgG-positive sample, except Lionex. The sensitivity was low during the early stages of the disease but improved over time. After 14 days from symptom onset, Lionex and NovaTec showed the highest sensitivity at 87.9% (95% CI 72.7–95.2) and 86.4% (95% CI 78.5–91.7), respectively. The agreement with RT-PCR results based on Cohen's kappa was as follows: Lionex (0.89) > NovaTec (0.70) > Dia.Pro (0.69) > AnshLabs (0.63) > EDI (0.55). / Conclusion: The Lionex and NovaLisa IgG ELISA kits, demonstrated the best overall performance

    IFN-γ-Inducible Irga6 Mediates Host Resistance against Chlamydia trachomatis via Autophagy

    Get PDF
    Chlamydial infection of the host cell induces Gamma interferon (IFNγ), a central immunoprotector for humans and mice. The primary defense against Chlamydia infection in the mouse involves the IFNγ-inducible family of IRG proteins; however, the precise mechanisms mediating the pathogen's elimination are unknown. In this study, we identify Irga6 as an important resistance factor against C. trachomatis, but not C. muridarum, infection in IFNγ-stimulated mouse embryonic fibroblasts (MEFs). We show that Irga6, Irgd, Irgm2 and Irgm3 accumulate at bacterial inclusions in MEFs upon stimulation with IFNγ, whereas Irgb6 colocalized in the presence or absence of the cytokine. This accumulation triggers a rerouting of bacterial inclusions to autophagosomes that subsequently fuse to lysosomes for elimination. Autophagy-deficient Atg5−/− MEFs and lysosomal acidification impaired cells surrender to infection. Irgm2, Irgm3 and Irgd still localize to inclusions in IFNγ-induced Atg5−/− cells, but Irga6 localization is disrupted indicating its pivotal role in pathogen resistance. Irga6-deficient (Irga6−/−) MEFs, in which chlamydial growth is enhanced, do not respond to IFNγ even though Irgb6, Irgd, Irgm2 and Irgm3 still localize to inclusions. Taken together, we identify Irga6 as a necessary factor in conferring host resistance by remodelling a classically nonfusogenic intracellular pathogen to stimulate fusion with autophagosomes, thereby rerouting the intruder to the lysosomal compartment for destruction

    Factors determining the survival of nasopharyngeal carcinoma with lung metastasis alone: does combined modality treatment benefit?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nasopharyngeal carcinoma (NPC) with lung metastasis alone has been reported as a relatively favorable prognostic group, and combined modality treatment might be indicated for selected cases. However, the prognostic factors determining survival of this group and the indication of combined therapy have not been thoroughly studied.</p> <p>Methods</p> <p>We retrospectively reviewed 246 patients of NPC with lung metastasis(es) alone presented at diagnosis or as the first failure after primary treatment from 1993 to 2008 in an academic tertiary hospital. Univariate and multivariate survival analyses of post-metastasis survival (PMS) and overall survival (OS) were carried out to determine the prognostic factors.</p> <p>Results</p> <p>The 3-year, 5-year, and 10-year of PMS and OS for the whole cohort were 34.3%, 17.0%, 8.6% and 67.8%, 45.4%, 18.5%, respectively. The median PMS (45.6 months <it>vs</it>. 23.7 months) and OS (73.7 months <it>vs</it>. 46.2 months) of patients treated with combined therapy was significantly longer than that of those treated with chemotherapy alone (<it>P </it>< 0.001). Age, disease-free interval (DFI) and treatment modality were evaluated as independent prognostic factors of OS, while only age and treatment modality retain their independent significance in PMS analysis. In stratified survival analysis, compared to chemotherapy alone, combined therapy could benefit the patients with DFI > 1 year, but not those with DFI ≤ 1 year.</p> <p>Conclusions</p> <p>Age ≤ 45 years, DFI > 1 year, and the combined therapy were good prognostic factors for NPC patients with lung metastasis(es) alone. The combination of local therapy and the basic chemotherapy should be considered for these patients with DFI > 1 year.</p

    Improved Survival of HIV-1-Infected Patients with Progressive Multifocal Leukoencephalopathy Receiving Early 5-Drug Combination Antiretroviral Therapy

    Get PDF
    Progressive multifocal leukoencephalopathy (PML), a rare devastating demyelinating disease caused by the polyomavirus JC (JCV), occurs in severely immunocompromised patients, most of whom have advanced-stage HIV infection. Despite combination antiretroviral therapy (cART), 50% of patients die within 6 months of PML onset. We conducted a multicenter, open-label pilot trial evaluating the survival benefit of a five-drug cART designed to accelerate HIV replication decay and JCV-specific immune recovery.All the patients received an optimized cART with three or more drugs for 12 months, plus the fusion inhibitor enfuvirtide during the first 6 months. The main endpoint was the one-year survival rate. A total of 28 patients were enrolled. At entry, median CD4+ T-cell count was 53 per microliter and 86% of patients had detectable plasma HIV RNA and CSF JCV DNA levels. Seven patients died, all before month 4. The one-year survival estimate was 0.75 (95% confidence interval, 0.61 to 0.93). At month 6, JCV DNA was undetectable in the CSF of 81% of survivors. At month 12, 81% of patients had undetectable plasma HIV RNA, and the median CD4+ T-cell increment was 105 per microliter. In univariate analysis, higher total and naive CD4+ T-cell counts and lower CSF JCV DNA level at baseline were associated with better survival. JCV-specific functional memory CD4+ T-cell responses, based on a proliferation assay, were detected in 4% of patients at baseline and 43% at M12 (P = 0.008).The early use of five-drug cART after PML diagnosis appears to improve survival. This is associated with recovery of anti-JCV T-cell responses and JCV clearance from CSF. A low CD4+ T-cell count (particularly naive subset) and high JCV DNA copies in CSF at PML diagnosis appear to be risk factors for death.ClinicalTrials.gov NCT00120367

    PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis

    Get PDF
    PICH is a SNF2 family DNA translocase that binds to ultra-fine DNA bridges (UFBs) in mitosis. Numerous roles for PICH have been proposed from protein depletion experiments, but a consensus has failed to emerge. Here, we report that deletion of PICH in avian cells causes chromosome structural abnormalities, and hypersensitivity to an inhibitor of Topoisomerase II (Topo II), ICRF-193. ICRF-193-treated PICH-/- cells undergo sister chromatid non-disjunction in anaphase, and frequently abort cytokinesis. PICH co-localises with Topo IIα on UFBs and at the ribosomal DNA locus, and the timely resolution of both structures depends on the ATPase activity of PICH. Purified PICH protein strongly stimulates the catalytic activity of Topo II in vitro. Consistent with this, a human PICH-/- cell line exhibits chromosome instability and chromosome condensation and decatenation defects similar to those of ICRF-193-treated cells. We propose that PICH and Topo II cooperate to prevent chromosome missegregation events in mitosis
    corecore