4 research outputs found
Therapeutic benefits of Indole-3-Carbinol in adjuvant-induced arthritis and its protective effect against methotrexate induced-hepatic toxicity
Abstract Background Rheumatoid arthritis (RA) being an incapacitating disease requires early effective intervention. Considering Methotrexate (MTX)- the first line of treatment for RA- intoxicates the liver; therefore, alternative therapies with similar efficacy yet lower cytotoxicity are desired. Indole-3-Carbinol (I3C) which is found in cruciferous vegetables was examined for its possible therapeutic potentials in comparison with MTX by investigating its anti-inflammatory, anti-arthritic, anti-oxidant, and hepatoprotective potentials in adjuvant-induced arthritis (AIA) rat model. Methods Arthritis was induced in Sprague Dawley rats by injection of Complete Freund’s Adjuvant (CFA). Arthritic rats were treated with I3C and/or MTX. To examine the anti-inflammatory and anti-arthritic effect, the following parameters were assessed: body weight, macroscopic scoring of the hind paw, the level of the pivotal cytokines (TNF-α, IL-6) heavily involved in the pathogenesis, spleen index, and erythrocyte sedimentation rate. At a histological level, the tibiotarsal joint was stained with several specific stains. To assess the hepatoprotective and anti-oxidant effects, several oxidative stress parameters were monitored, and the liver histology was examined. Results Both I3C and MTX attenuated the inflammation that was aggravated by arthritis by downregulating the inflammatory markers and mediators and alleviating the histopathological changes affecting the tibiotarsal joint. I3C attenuated the liver impairment that was initiated by arthritis and MTX treatment. It did so by downregulating the pro-oxidants and up-regulating the anti-oxidant defenses and by reducing the pathological changes affecting the liver. Conclusion Our results suggest that I3C is as potent as MTX as an anti-inflammatory and anti-arthritic agent. In addition, I3C does so while protecting the liver from damage as opposed to MTX
Galangin: A Promising Flavonoid for the Treatment of Rheumatoid Arthritis—Mechanisms, Evidence, and Therapeutic Potential
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by progressive joint inflammation and damage. Oxidative stress plays a critical role in the onset and progression of RA, significantly contributing to the disease’s symptoms. The complex nature of RA and the role of oxidative stress make it particularly challenging to treat effectively. This article presents a comprehensive review of RA’s development, progression, and the emergence of novel treatments, introducing Galangin (GAL), a natural flavonoid compound sourced from various plants, as a promising candidate. The bioactive properties of GAL, including its anti-inflammatory, antioxidant, and immunomodulatory effects, are discussed in detail. The review elucidates GAL’s mechanisms of action, focusing on its interactions with key targets such as inflammatory cytokines (e.g., TNF-α, IL-6), enzymes (e.g., SOD, MMPs), and signaling pathways (e.g., NF-κB, MAPK), which impact inflammatory responses, immune cell activation, and joint damage. The review also addresses the lack of comprehensive understanding of potential treatment options for RA, particularly in relation to the role of GAL as a therapeutic candidate. It highlights the need for further research and clinical studies to ascertain the effectiveness of GAL in RA treatment and to elucidate its mechanisms of action. Overall, this review provides valuable insights into the potential of GAL as a therapeutic option for RA, shedding light on its multifaceted pharmacological properties and mechanisms of action, while suggesting avenues for future research and clinical applications