2 research outputs found

    Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC

    Full text link
    We present a scanning tunneling spectroscopy (STS) study of the local electronic structure of single and bilayer graphene grown epitaxially on a SiC(0001) surface. Low voltage topographic images reveal fine, atomic-scale carbon networks, whereas higher bias images are dominated by emergent spatially inhomogeneous large-scale structure similar to a carbon-rich reconstruction of SiC(0001). STS spectroscopy shows a ~100meV gap-like feature around zero bias for both monolayer and bilayer graphene/SiC, as well as significant spatial inhomogeneity in electronic structure above the gap edge. Nanoscale structure at the SiC/graphene interface is seen to correlate with observed electronic spatial inhomogeneity. These results are important for potential devices involving electronic transport or tunneling in graphene/SiC.Comment: Acknowledgment added. 11 pages, 3 figure

    Giant Phonon-induced Conductance in Scanning Tunneling Spectroscopy of Gate-tunable Graphene

    Full text link
    The honeycomb lattice of graphene is a unique two-dimensional (2D) system where the quantum mechanics of electrons is equivalent to that of relativistic Dirac fermions. Novel nanometer-scale behavior in this material, including electronic scattering, spin-based phenomena, and collective excitations, is predicted to be sensitive to charge carrier density. In order to probe local, carrier-density dependent properties in graphene we have performed atomically-resolved scanning tunneling spectroscopy measurements on mechanically cleaved graphene flake devices equipped with tunable back-gate electrodes. We observe an unexpected gap-like feature in the graphene tunneling spectrum which remains pinned to the Fermi level (E_F) regardless of graphene electron density. This gap is found to arise from a suppression of electronic tunneling to graphene states near E_F and a simultaneous giant enhancement of electronic tunneling at higher energies due to a phonon-mediated inelastic channel. Phonons thus act as a "floodgate" that controls the flow of tunneling electrons in graphene. This work reveals important new tunneling processes in gate-tunable graphitic layers
    corecore