19 research outputs found

    Brag2 differentially regulates β1- and β3-integrin-dependent adhesion in endothelial cells and is involved in developmental and pathological angiogenesis

    Get PDF
    β1-Integrins are essential for angiogenesis. The mechanisms regulating integrin function in endothelial cells (EC) and their contribution to angiogenesis remain elusive. Brag2 is a guanine nucleotide exchange factor for the small Arf-GTPases Arf5 and Arf6. The role of Brag2 in EC and angiogenesis and the underlying molecular mechanisms remain unclear. siRNA-mediated Brag2-silencing reduced EC angiogenic sprouting and migration. Brag2-siRNA transfection differentially affected α5β1- and αVβ3-integrin function: specifically, Brag2-silencing increased focal/fibrillar adhesions and adhesion on β1-integrin ligands (fibronectin and collagen), while reducing the adhesion on the αVβ3-integrin ligand, vitronectin. Consistent with these results, Brag2-silencing enhanced surface expression of α5β1-integrin, while reducing surface expression of αVβ3-integrin. Mechanistically, Brag2-mediated αVβ3-integrin-recycling and β1-integrin endocytosis and specifically of the active/matrix-bound α5β1-integrin present in fibrillar/focal adhesions (FA), suggesting that Brag2 contributes to the disassembly of FA via β1-integrin endocytosis. Arf5 and Arf6 are promoting downstream of Brag2 angiogenic sprouting, β1-integrin endocytosis and the regulation of FA. In vivo silencing of the Brag2-orthologues in zebrafish embryos using morpholinos perturbed vascular development. Furthermore, in vivo intravitreal injection of plasmids containing Brag2-shRNA reduced pathological ischemia-induced retinal and choroidal neovascularization. These data reveal that Brag2 is essential for developmental and pathological angiogenesis by promoting EC sprouting through regulation of adhesion by mediating β1-integrin internalization and link for the first time the process of β1-integrin endocytosis with angiogenesis.Deutsche Forschungsgemeinschaft. Transregional Collaborative Research Centre. (SFB/TR23)Deutsche Forschungsgemeinschaft. Transregional Collaborative Research Centre. (Project A2)Deutsche Forschungsgemeinschaft. Transregional Collaborative Research Centre.(Project Z5)Else Kroner-Fresenius-Stiftung (2013_A2

    Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction.

    Get PDF
    Endothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network

    BRAG2, an Arf GEF, regulates integrin-dependent endothelial adhesion and is involved in developmental and pathological angiogenesis

    No full text
    ß1-integrins are essential for angiogenesis but the mechanisms regulating integrin function in endothelial cells (EC) and their contribution to angiogenesis remain elusive. BRAG2 is a guanine nucleotide exchange factor for the small Arf-GTPases Arf5 and Arf6. The role of BRAG2 in EC and angiogenesis and the underlying molecular mechanisms remains unclear. siRNA-mediated BRAG2-silencing reduced EC angiogenic sprouting and migration. BRAG2-siRNA-transfection differentially affected a5ß1- and aVß3-integrin function: specifically, BRAG2-silencing increased focal/fibrillar adhesions and EC adhesion on ß1-integrin-ligands (fibronectin and collagen), while reducing the adhesion on the aVß3-integrin-ligand, vitronectin. Consistent with these results, BRAG2-silencing enhanced surface expression of a5ß1-integrin, while reducing surface expression of aVß3-integrin. Mechanistically, BRAG2 mediated recycling of aVß3-integrins and endocytosis of ß1-integrins and specifically of the active/matrix bound a5ß1-integrin present in fibrillar/focal adhesions (FA), suggesting that BRAG2 contributes to the disassembly of FA via ß1-integrin-endocytosis. Arf5 and Arf6 are promoting downstream of BRAG2 angiogenic sprouting, ß1-integrin-endocytosis and the regulation of FA. In vivo silencing of the BRAG2-orthologues in zebrafish embryos using morpholinos perturbed vascular development. Furthermore, in vivo intravitral injection of plasmids containing BRAG2-shRNA reduced pathological ischemia-induced retinal and choroidal neovascularization. These data reveals that BRAG2 is essential for developmental and pathological angiogenesis by promoting EC sprouting through regulation of adhesion by mediating ß1-integrin internalization and associates for the first time the process of ß1-integrin endocytosis with angiogenesis

    Vascular niche controls organ regeneration

    No full text
    Vessels provide the conduits that deliver metabolites and oxygen to the tissue and export waste products. After ischemia or tissue injury, endothelial cells migrate and proliferate to re-establish the capillary network in a process termed angiogenesis to maintain oxygen supply. Besides these essential and well-established functions in oxygen delivery, recent studies suggest that endothelial cells contribute to the multicellular-crosstalk that balances regeneration and dysfunctional or maladaptive healing. Thus, endothelial cells not only seem important for oxygen delivery but act as paracrine source for signals that determine tissue regeneration versus fibrosis. The interaction of endothelial-derived signals with hepatocyte functions has already been shown in the development of model organisms such as zebrafish1 and more recently during regeneration of lung and liver in adult mice

    Rab7a and Rab27b control secretion of endothelial microRNA through extracellular vesicles

    No full text
    By transporting regulatory RNAs like microRNAs, extracellular vesicles provide a novel layer of intercellular gene regulation. However, the underlying secretory pathways and the mechanisms of cargo selection are poorly understood. Rab GTPases are central coordinators of membrane trafficking with distinct members of this family being responsible for specific transport pathways. Here we identified a vesicular export mechanism for miR-143, induced by the shear stress responsive transcription factor KLF2, and demonstrate its dependency on Rab7a/Rab27b in endothelial cells

    Endothelial transcription factor KLF2 negatively regulates liver regeneration via induction of activin A

    No full text
    Endothelial cells (ECs) not only are important for oxygen delivery but also act as a paracrine source for signals that determine the balance between tissue regeneration and fibrosis. Here we show that genetic inactivation of flow-induced transcription factor Krüppel-like factor 2 (KLF2) in ECs results in reduced liver damage and augmentation of hepatocyte proliferation after chronic liver injury by treatment with carbon tetrachloride (CCl4). Serum levels of GLDH3 and ALT were significantly reduced in CCl4-treated EC-specific KLF2-deficient mice. In contrast, transgenic overexpression of KLF2 in liver sinusoidal ECs reduced hepatocyte proliferation. KLF2 induced activin A expression and secretion from endothelial cells in vitro and in vivo, which inhibited hepatocyte proliferation. However, loss or gain of KLF2 expression did not change capillary density and liver fibrosis, but significantly affected hepatocyte proliferation. Taken together, the data demonstrate that KLF2 induces an antiproliferative secretome, including activin A, which attenuates liver regeneration

    Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease

    Get PDF
    Objectives: This study evaluated the regulation and function of micro-RNAs (miRs) in bone marrow-mononuclear cells (BMCs). Background: Although cell therapy with BMCs may represent a therapeutic option to treat patients with heart disease, the impaired functionality of patient-derived cells remains a major challenge. Small noncoding miRs post-transcriptionally control gene expression patterns and play crucial roles in modulating cell survival and function. Methods: Micro-RNAs were detected by miR profiling in BMCs isolated from healthy volunteers (n = 6) or from patients with myocardial infarction (n = 6), and the results were confirmed by polymerase chain reaction (PCR) in a larger cohort (n = 37). The function of selected miRs was determined by gain-of-function studies in vitro and by locked nuclear acid (LNA) modified inhibitors in vitro and in vivo. Results: We identified several miRs that are up-regulated in BMCs from patients with myocardial infarction compared with BMCs from healthy controls, including the pro-apoptotic and antiproliferative miR-34a and the hypoxia-controlled miR-210. Inhibition of miR-34 by LNA-34a significantly reduced miR-34a expression and blocked hydrogen peroxide-induced cell death of BMC in vitro, whereas overexpression of miR-34a reduced the survival of BMCs in vitro. Pre-treatment of BMCs with LNA-34a ex vivo significantly increased the therapeutic benefit of transplanted BMCs in mice after acute myocardial infarction (AMI). Conclusions: These results demonstrate that cardiovascular disease modulates the miR expression of BMCs in humans. Reducing the expression of the pro-apoptotic miR-34a improves the survival of BMCs in vitro and enhances the therapeutic benefit of cell therapy in mice after AMI. (BMC Registry, NCT00962364; Progenitor Cell Therapy in Dilative Cardiomyopathy, NCT00284713

    Histone Deacetylase 9 Promotes Angiogenesis by Targeting the Antiangiogenic MicroRNA-17–92 Cluster in Endothelial Cells

    No full text
    Objective— Histone deacetylases (HDACs) modulate gene expression by deacetylation of histone and nonhistone proteins. Several HDACs control angiogenesis, but the role of HDAC9 is unclear. Methods and Results— Here, we analyzed the function of HDAC9 in angiogenesis and its involvement in regulating microRNAs. In vitro, silencing of HDAC9 reduces endothelial cell tube formation and sprouting. Furthermore, HDAC9 silencing decreases vessel formation in a spheroid-based Matrigel plug assay in mice and disturbs vascular patterning in zebrafish embryos. Genetic deletion of HDAC9 reduces retinal vessel outgrowth and impairs blood flow recovery after hindlimb ischemia. Consistently, overexpression of HDAC9 increases endothelial cell sprouting, whereas mutant constructs lacking the catalytic domain, the nuclear localization sequence, or sumoylation site show no effect. To determine the mechanism underlying the proangiogenic effect of HDAC9, we measured the expression of the microRNA (miR)-17–92 cluster, which is known for its antiangiogenic activity. We demonstrate that silencing of HDAC9 in endothelial cells increases the expression of miR-17–92. Inhibition of miR-17–20a rescues the sprouting defects induced by HDAC9 silencing in vitro and blocking miR-17 expression partially reverses the disturbed vascular patterning of HDAC9 knockdown in zebrafish embryos. Conclusion— We found that HDAC9 promotes angiogenesis and transcriptionally represses the miR-17–92 cluster

    Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth

    No full text
    Rationale: The human genome harbors a large number of sequences encoding for RNAs that are not translated but control cellular functions by distinct mechanisms. The expression and function of the longer transcripts namely the long noncoding RNAs in the vasculature are largely unknown. OBJECTIVE:: Here, we characterized the expression of long noncoding RNAs in human endothelial cells and elucidated the function of the highly expressed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). METHODS AND RESULTS:: Endothelial cells of different origin express relative high levels of the conserved long noncoding RNAs MALAT1, taurine upregulated gene 1 (TUG1), maternally expressed 3 (MEG3), linc00657, and linc00493. MALAT1 was significantly increased by hypoxia and controls a phenotypic switch in endothelial cells. Silencing of MALAT1 by small interfering RNAs or GapmeRs induced a promigratory response and increased basal sprouting and migration, whereas proliferation of endothelial cells was inhibited. When angiogenesis was further stimulated by vascular endothelial growth factor, MALAT1 small interfering RNAs induced discontinuous sprouts indicative of defective proliferation of stalk cells. In vivo studies confirmed that genetic ablation of MALAT1 inhibited proliferation of endothelial cells and reduced neonatal retina vascularization. Pharmacological inhibition of MALAT1 by GapmeRs reduced blood flow recovery and capillary density after hindlimb ischemia. Gene expression profiling followed by confirmatory quantitative reverse transcriptase-polymerase chain reaction demonstrated that silencing of MALAT1 impaired the expression of various cell cycle regulators. CONCLUSIONS:: Silencing of MALAT1 tips the balance from a proliferative to a migratory endothelial cell phenotype in vitro, and its genetic deletion or pharmacological inhibition reduces vascular growth in vivo
    corecore