76 research outputs found
Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis
クローン性造血の臨床予後への影響を解明 --遺伝子変異とコピー数異常の統合的な知見--. 京都大学プレスリリース. 2021-07-09.Clonal hematopoiesis (CH) in apparently healthy individuals is implicated in the development of hematological malignancies (HM) and cardiovascular diseases. Previous studies of CH analyzed either single-nucleotide variants and indels (SNVs/indels) or copy number alterations (CNAs), but not both. Here, using a combination of targeted sequencing of 23 CH-related genes and array-based CNA detection of blood-derived DNA, we have delineated the landscape of CH-related SNVs/indels and CNAs in 11, 234 individuals without HM from the BioBank Japan cohort, including 672 individuals with subsequent HM development, and studied the effects of these somatic alterations on mortality from HM and cardiovascular disease, as well as on hematological and cardiovascular phenotypes. The total number of both types of CH-related lesions and their clone size positively correlated with blood count abnormalities and mortality from HM. CH-related SNVs/indels and CNAs exhibited statistically significant co-occurrence in the same individuals. In particular, co-occurrence of SNVs/indels and CNAs affecting DNMT3A, TET2, JAK2 and TP53 resulted in biallelic alterations of these genes and was associated with higher HM mortality. Co-occurrence of SNVs/indels and CNAs also modulated risks for cardiovascular mortality. These findings highlight the importance of detecting both SNVs/indels and CNAs in the evaluation of CH
Erythroid differentiation enhances RNA mis-splicing in SF3B1-mutant myelodysplastic syndromes with ring sideroblasts
Myelodysplastic syndromes with ring sideroblasts (MDS-RS) commonly develop from hematopoietic stem cells (HSC) bearing mutations in the splicing factor SF3B1 (SF3B1mt). Direct studies into MDS-RS pathobiology have been limited by a lack of model systems that fully recapitulate erythroid biology and RS development and the inability to isolate viable human RS. Here, we combined successful direct RS isolation from patient samples, high-throughput multiomics analysis of cells encompassing the SF3B1mt stem-erythroid continuum, and functional assays to investigate the impact of SF3B1mt on erythropoiesis and RS accumulation. The isolated RS differentiated, egressed into the blood, escaped traditional nonsense-mediated decay (NMD) mechanisms, and leveraged stress-survival pathways that hinder wild-type hematopoiesis through pathogenic GDF15 overexpression. Importantly, RS constituted a contaminant of magnetically enriched CD34+ cells, skewing bulk transcriptomic data. Mis-splicing in SF3B1mt cells was intensified by erythroid differentiation through accelerated RNA splicing and decreased NMD activity, and SF3B1mt led to truncations in several MDS-implicated genes. Finally, RNA mis-splicing induced an uncoupling of RNA and protein expression, leading to critical abnormalities in proapoptotic p53 pathway genes. Overall, this characterization of erythropoiesis in SF3B1mt RS provides a resource for studying MDS-RS and uncovers insights into the unexpectedly active biology of the “dead-end” RS.
Significance: Ring sideroblast isolation combined with state-of-the-art multiomics identifies survival mechanisms underlying SF3B1-mutant erythropoiesis and establishes an active role for erythroid differentiation and ring sideroblasts themselves in SF3B1-mutant myelodysplastic syndrome pathogenesis
Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells
Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
Tumor protein p53 (TP53) is the most frequently mutated gene in cancer1,2. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease3,4, rapid transformation to acute myeloid leukemia (AML)5, resistance to conventional therapies6–8 and dismal outcomes9. Consistent with the tumor-suppressive role of TP53, patients harbor both mono- and biallelic mutations10. However, the biological and clinical implications of TP53 allelic state have not been fully investigated in MDS or any other cancer type. We analyzed 3,324 patients with MDS for TP53 mutations and allelic imbalances and delineated two subsets of patients with distinct phenotypes and outcomes. One-third of TP53-mutated patients had monoallelic mutations whereas two-thirds had multiple hits (multi-hit) consistent with biallelic targeting. Established associations with complex karyotype, few co-occurring mutations, high-risk presentation and poor outcomes were specific to multi-hit patients only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System (IPSS-R)11. Surprisingly, monoallelic patients did not differ from TP53 wild-type patients in outcomes and response to therapy. This study shows that consideration of TP53 allelic state is critical for diagnostic and prognostic precision in MDS as well as in future correlative studies of treatment response
Srsf2 P95H Mutation Causes Impaired Stem Cell Repopulation and Hematopoietic Differentiation in Mice
Recommended from our members
Myelodysplastic Syndrome (MDS)-Determining Clonal Events at Presentation of Aplastic Anemia (AA)
Abstract
Historically, the evolution rate of aplastic anemia (AA) to MDS approaches 15% in 10 yrs; thus, AA can be considered a major predisposition factor for secondary MDS (sMDS). The likely etiology includes expansion of a preexisting clone or truly late clonogenic events. In both instances, progression can be a result of a clonal escape, but confirmation of the presence of mutant cells at presentation would indicate that initial autoimmune processes may represent a tumor surveillance reaction.
We studied 326 patients with AA and 47 patients with paroxysmal nocturnal hemoglobinuria (PNH) and identified 36 cases (progression rate: 11% in median follow up of 6 years) that evolved to MDS or AML (median time to progression: 3.2 yrs.; transplanted patients were not censored). Cytogenetic analysis upon progression showed abnormal karyotype in 83% of cases; 7% had complex karyotype and -7/del(7q) was present in 62% of cases. The presence of a PNH clone was detected in 17% of cases that transformed to sMDS vs. 35% in non-progressors (P=.1). For comparison, we have also analyzed primary de novo cases of MDS (pMDS) with (N=94) and without (N=557) -7/del(7q). In contrast to sMDS, -7/del(7q) was present in 14.4% of cases in pMDS.
Because sMDS following AA or PNH included a high proportion of patients with -7/del(7q), we compared sMDS with -7/del(7q) to pMDS with -7/del(7q) for coexisting mutational events. Mutations in RUNX1, CBL, SETBP1 and ASXL1 appeared to be more frequent in sMDS vs. pMDS (28.6% vs. 2.1%, 21.4% vs. 2.1%, 21.4% vs. 5.3%, 21.4% vs. 10.6%, P=.003, P=.02, P=.07, P=.37, respectively). In contrast, TP53 and DMT3A were more common in pMDS (7.1% for sMDS vs. 17%, 0% for sMDS vs. 8.5%, P=.69, P=.59). Similarly, there were several other distinctive differences between all sMDS and pMDS irrespective of the cytogenetics: mutations in SF3B1, SRSF2, NPM1, DNMT3A were common in primary AML but entirely absent from cases after AA; mutations in RUNX1 and SETBP1 appeared to be more frequent in sMDS vs. pMDS (26.3% vs. 8.3%, 21.1% vs. 3.2%, 15.8% vs. 3.9%, P=.03, P=.005, respectively).
Whole exome NGS was performed after progression, with confirmed somatic mutations subsequently tracked back by targeted deep NGS applied to serial samples starting at initial presentation. Confirmed mutational events and chromosomal aberrations were found in 19/36 patients with sMDS; 17/19 cases of sMDS had at least 1 confirmed somatic mutation. Remarkably, in retrospective analysis in 6/7 cases studied serially, at least one of the identified mutations was detectable at presentation when deep targeted sequencing (depth 5,000~20,000 reads) was performed. In 5 of these cases the alterations appeared to be ancestral events for sMDS evolution. When anadditional 77 AA or PNH cases were studied by deep sequencing, somatic mutations were present in 48% of AA patients at presentation. Detection of clonal events at presentation was associated with an increased risk of subsequent MDS evolution (14/37 mutant cases vs. 3/40 nonclonal cases evolved, P=.002). Mutations found at both initial presentation and upon evolution were suggestive of a slow expansion of previously cryptic clones (ASXL1, CUX1, TET2, CBL, RUNX1, and SETBP1). Patients with these genes (n=18) had worseoverall survival compared to patients without these mutations (P=.03). To assess the potential impact of immunosuppressive therapies (IST), we also investigated a subset (out of 77) of 53 patients (39 responders and 14 refractory cases) following IST. Clonal somatic events were identified in 27 of them, but there was no association between the response to IST and somatic mutations at presentation.
Our results demonstrate that while subclonal mutations indicative of oligoclonal hematopoiesis are frequent in AA, the presence of permissive ancestral somatic events at the outset of AA predisposes patients to sMDS, a feature that had diagnostic and prognostic implications.
Disclosures
Sekeres: Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; TetraLogic: Membership on an entity's Board of Directors or advisory committees
Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.
再生不良性貧血における遺伝子変異の解明 -白血病発症にいたる過程を初めて解明-. 京都大学プレスリリース. 2015-07-09.[BACKGROUND]In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. [METHODS]We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. [RESULTS]Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- andBCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. [CONCLUSIONS]Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.
- …