326 research outputs found

    Glucanase Inhibitor Protein (GIP)

    Get PDF
    Several key cellular events, such as adhesion to the host surface, penetration, and colonization of host tissue, take place during plant infection by oomycetes that can also manipulate biochemical and physiological processes in their host plants through a diverse array of virulence or avirulence molecules, known as effectors (Birch et al. 2006; Ellis et al. 2006; Kamoun 2007; Schornack et al. 2009). In susceptible plants, these effectors promote infection by suppressing defense responses, enhancing susceptibility, or inducing disease symptoms. In resistant plants, the products of the resistance genes are able to recognize the effectors, promoting an efective defense response known as hypersensitive response (HR) which restricts the pathogen to an area of scorched earth besides host cell death (Kamoun 2003; Kamoun 2007; Schornack et al. 2009). Phytophthora effectors that suppress host defense responses have be ...info:eu-repo/semantics/publishedVersio

    Alternative Mechanisms for Tn5 Transposition

    Get PDF
    Bacterial transposons are known to move to new genomic sites using either a replicative or a conservative mechanism. The behavior of transposon Tn5 is anomalous. In vitro studies indicate that it uses a conservative mechanism while in vivo results point to a replicative mechanism. To explain this anomaly, a model is presented in which the two mechanisms are not independent—as widely believed—but could represent alternate outcomes of a common transpositional pathway

    The Minimum Information Required for a Glycomics Experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data

    Get PDF
    MIRAGE (Minimum Information Required for A Glycomics Experiment) is an initiative that was created by experts in the fields of glycobiology, glycoanalytics, and glycoinformatics to produce guidelines for reporting results from the diverse types of experiments and analyses used in structural and functional studies of glycans in the scientific literature. As a sequel to the guidelines for sample preparation (Struwe et al. 2016, Glycobiology, 26, 907-910) and mass spectrometry (MS) data (Kolarich et al. 2013, Mol. Cell Proteomics. 12, 991-995), here we present the first version of guidelines intended to improve the standards for reporting data from glycan microarray analyses. For each of eight areas in the workflow of a glycan microarray experiment, we provide guidelines for the minimal information that should be provided in reporting results. We hope that the MIRAGE glycan microarray guidelines proposed here will gain broad acceptance by the community, and will facilitate interpretation and reproducibility of the glycan microarray results with implications in comparison of data from different laboratories and eventual deposition of glycan microarray data in international databases

    AXY3 encodes a α-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis plant cell walls

    Get PDF
    Xyloglucan is the most abundant hemicellulose in the walls of dicots such as Arabidopsis. It is part of the load-bearing structure of a plant cell and its metabolism is thought to play a major role in cell elongation. However, the molecular mechanism by which xyloglucan carries out this and other functions in planta is not well understood. We performed a forward genetic screen utilizing xyloglucan oligosaccharide mass profiling on chemically mutagenized Arabidopsis seedlings to identify mutants with altered xyloglucan structures termed axy-mutants. One of the identified mutants, axy3.1, contains xyloglucan with a higher proportion of non-fucosylated xyloglucan subunits. Mapping revealed that axy3.1 contains a point mutation in XYLOSIDASE1 (XYL1) known to encode for an apoplastic glycoside hydrolase releasing xylosyl residues from xyloglucan oligosaccharides at the non-reducing end. The data support the hypothesis that AXY3/XYL1 is an essential component of the apoplastic xyloglucan degradation machinery and as a result of the lack of function in the various axy3-alleles leads not only to an altered xyloglucan structure but also a xyloglucan that is less tightly associated with other wall components. However, the plant can cope with the excess xyloglucan relatively well as the mutant does not display any visible growth or morphological phenotypes with the notable exception of shorter siliques and reduced fitness. Taken together, these results demonstrate that plant apoplastic hydrolases have a larger impact on wall polymer structure and function than previously thought

    Evolutionary and pulsational properties of white dwarf stars

    Get PDF
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha

    Get PDF
    We employed systematic mixture analysis to determine optimal levels of acetate, propionate, and butyrate for cell growth and polyhydroxyalkanoate (PHA) production by Ralstonia eutropha H16. Butyrate was the preferred acid for robust cell growth and high PHA production. The 3-hydroxyvalerate content in the resulting PHA depended on the proportion of propionate initially present in the growth medium. The proportion of acetate dramatically affected the final pH of the growth medium. A model was constructed using our data that predicts the effects of these acids, individually and in combination, on cell dry weight (CDW), PHA content (%CDW), PHA production, 3HV in the polymer, and final culture pH. Cell growth and PHA production improved approximately 1.5-fold over initial conditions when the proportion of butyrate was increased. Optimization of the phosphate buffer content in medium containing higher amounts of butyrate improved cell growth and PHA production more than 4-fold. The validated organic acid mixture analysis model can be used to optimize R. eutropha culture conditions, in order to meet targets for PHA production and/or polymer HV content. By modifying the growth medium made from treated industrial waste, such as palm oil mill effluent, more PHA can be produced.Malaysia. Ministry of Science, Technology and Innovation (MOSTI

    Down-regulation of four putative arabinoxylan feruloyl transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls

    Get PDF
    Industrial processes to produce ethanol from lignocellulosic materials are available, but improved efficiency is necessary to make them economically viable. One of the limitations for lignocellulosic conversion to ethanol is the inaccessibility of the cellulose and hemicelluloses within the tight cell wall matrix. Ferulates (FA) can cross-link different arabinoxylan molecules in the cell wall of grasses via diferulate and oligoferulate bridges. This complex cross-linking is thought to be a key factor in limiting the biodegradability of grass cell walls and, therefore, the reduction in FA is an attractive target to improve enzyme accessibility to cellulose and hemicelluloses. Unfortunately, our knowledge of the genes responsible for the incorporation of FA to the cell wall is limited. A bioinformatics prediction based on the gene similarities and higher transcript abundance in grasses relative to dicot species suggested that genes from the pfam family PF02458 may act as arabinoxylan feruloyl transferases. We show here that the FA content in the cell walls and the transcript levels of rice genes Os05g08640, Os06g39470, Os01g09010 and Os06g39390, are both higher in the stems than in the leaves. In addition, an RNA interference (RNAi) construct that simultaneously down-regulates transcript levels of these four genes is associated with a significant reduction in FA of the cell walls from the leaves of the transgenic plants relative to the control (19% reduction, P < 0.0001). Therefore, our experimental results in rice support the bioinformatics prediction that members of family PF02458 are involved in the incorporation of FA into the cell wall in grasses

    Adult Romantic Attachment, Negative Emotionality, and Depressive Symptoms in Middle Aged Men: A Multivariate Genetic Analysis

    Get PDF
    Adult romantic attachment styles reflect ways of relating in close relationships and are associated with depression and negative emotionality. We estimated the extent to which dimensions of romantic attachment and negative emotionality share genetic or environmental risk factors in 1,237 middle-aged men in the Vietnam Era Twin Study of Aging (VETSA). A common genetic factor largely explained the covariance between attachment-related anxiety, attachment-related avoidance, depressive symptoms, and two measures of negative emotionality: Stress-Reaction (anxiety), and Alienation. Multivariate results supported genetic and environmental differences in attachment. Attachment-related anxiety and attachment-related avoidance were each influenced by additional genetic factors not shared with other measures; the genetic correlation between the attachment measure-specific genetic factors was 0.41, indicating some, but not complete overlap of genetic factors. Genetically informative longitudinal studies on attachment relationship dimensions can help to illuminate the role of relationship-based risk factors in healthy aging
    corecore