6,591 research outputs found

    Decoherence induced CPT violation and entangled neutral mesons

    Get PDF
    We discuss two classes of semi-microscopic theoretical models of stochastic space-time foam in quantum gravity and the associated effects on entangled states of neutral mesons, signalling an intrinsic breakdown of CPT invariance. One class of models deals with a specific model of foam, initially constructed in the context of non-critical (Liouville) string theory, but viewed here in the more general context of effective quantum-gravity models. The relevant Hamiltonian perturbation, describing the interaction of the meson with the foam medium, consists of off-diagonal stochastic metric fluctuations, connecting distinct mass eigenstates (or the appropriate generalisation thereof in the case of K-mesons), and it is proportional to the relevant momentum transfer (along the direction of motion of the meson pair). There are two kinds of CPT-violating effects in this case, which can be experimentally disentangled: one (termed ``omega-effect'') is associated with the failure of the indistinguishability between the neutral meson and its antiparticle, and affects certain symmetry properties of the initial state of the two-meson system; the second effect is generated by the time evolution of the system in the medium of the space-time foam, and can result in time-dependent contributions of the $omega-effect type in the time profile of the two meson state. Estimates of both effects are given, which show that, at least in certain models, such effects are not far from the sensitivity of experimental facilities available currently or in the near future. The other class of quantum gravity models involves a medium of gravitational fluctuations which behaves like a ``thermal bath''. In this model both of the above-mentioned intrinsic CPT violation effects are not valid.Comment: 16 pages revtex, no figure

    Exact O(g^2 alpha_s) top decay width from general massive two-loop integrals

    Full text link
    We calculate the b-dependent self-energy of the top quark at O(g^2 \alpha_s) by using a general massive two-loop algorithm proposed in a previous article. From this we derive by unitarity the O(\alpha_s) radiative corrections to the decay width of the top quark, where all effects associated with the bb quark mass are included without resorting to a mass expansion. Our results agree with the analytical results available for the O(\alpha_s) correction to the top quark width

    Spacetime Structure of an Evaporating Black Hole in Quantum Gravity

    Full text link
    The impact of the leading quantum gravity effects on the dynamics of the Hawking evaporation process of a black hole is investigated. Its spacetime structure is described by a renormalization group improved Vaidya metric. Its event horizon, apparent horizon, and timelike limit surface are obtained taking the scale dependence of Newton's constant into account. The emergence of a quantum ergosphere is discussed. The final state of the evaporation process is a cold, Planck size remnant.Comment: 23 pages, BibTeX, revtex4, 7 figure

    Conformal ``thin sandwich'' data for the initial-value problem of general relativity

    Full text link
    The initial-value problem is posed by giving a conformal three-metric on each of two nearby spacelike hypersurfaces, their proper-time separation up to a multiplier to be determined, and the mean (extrinsic) curvature of one slice. The resulting equations have the {\it same} elliptic form as does the one-hypersurface formulation. The metrical roots of this form are revealed by a conformal ``thin sandwich'' viewpoint coupled with the transformation properties of the lapse function.Comment: 7 pages, RevTe

    Benthic invertebrates that form habitat on deep banks off southern California, with special reference to deep sea coral

    Get PDF
    There is increasing interest in the potential impacts that fishing activities have on megafaunal benthic invertebrates occurring in continental shelf and slope ecosystems. We examined how the structure, size, and high-density aggregations of invertebrates provided structural relief for fishes in continental shelf and slope ecosystems off southern California. We made 112 dives in a submersible at 32−320 m water depth, surveying a variety of habitats from high-relief rock to flat sand and mud. Using quantitative video transect methods, we made 12,360 observations of 15 structure-form-ing invertebrate taxa and 521,898 individuals. We estimated size and incidence of epizoic animals on 9105 sponges, black corals, and gorgonians. Size variation among structure-form-ing invertebrates was significant and 90% of the individuals were <0.5 m high. Less than 1% of the observations of organisms actually sheltering in or located on invertebrates involved fishes. From the analysis of spatial associations between fishes and large invertebrates, six of 108 fish species were found more often adjacent to invertebrate colonies than the number of fish predicted by the fish-density data from transects. This finding indicates that there may be spatial associations that do not necessarily include physical contact with the sponges and corals. However, the median distances between these six fish species and the invertebrates were not particularly small (1.0−5.5 m). Thus, it is likely that these fishes and invertebrates are present together in the same habitats but that there is not necessarily a functional relationship between these groups of organisms. Regardless of their associations with fishes, these invertebrates provide structure and diversity for continental shelf ecosystems off southern California and certainly deserve the attention of scientists undertaking future conservation efforts

    Wall jet analysis for circulation control aerodynamics. Part 1: Fundamental CFD and turbulence modeling concepts

    Get PDF
    An overview of parabolic and PNS (Parabolized Navier-Stokes) methodology developed to treat highly curved sub and supersonic wall jets is presented. The fundamental data base to which these models were applied is discussed in detail. The analysis of strong curvature effects was found to require a semi-elliptic extension of the parabolic modeling to account for turbulent contributions to the normal pressure variations, as well as an extension to the turbulence models utilized, to account for the highly enhanced mixing rates observed in situations with large convex curvature. A noniterative, pressure split procedure is shown to extend parabolic models to account for such normal pressure variations in an efficient manner, requiring minimal additional run time over a standard parabolic approach. A new PNS methodology is presented to solve this problem which extends parabolic methodology via the addition of a characteristic base wave solver. Applications of this approach to analyze the interaction of wave and turbulence processes in wall jets is presented

    Planckian AdS2×S2AdS_2 \times S_2 space is an exact solution of the semiclassical Einstein equations

    Full text link
    The product space configuration AdS2×S2AdS_2\times S_2 (with ll and rr being radiuses of the components) carrying the electric charge QQ is demonstrated to be an exact solution of the semiclassical Einstein equations in presence of the Maxwell field. If the logarithmic UV divergences are absent in the four-dimensional theory the solution we find is identical to the classical Bertotti-Robinson space (r=l=Qr=l=Q) with no quantum corrections added. In general, the analysis involves the quadratic curvature coupling λ\lambda appearing in the effective action. The solutions we find are of the following types: i) (for arbitrary λ\lambda) charged configuration which is quantum deformation of the Bertotti-Robinson space; ii) (λ>λcr\lambda >\lambda_{cr}) Q=0 configuration with ll and rr being of the Planck order; iii) (λ<λcr\lambda<\lambda_{cr}) Q0Q\neq 0 configuration (ll and rr are of the Planck order) not connected analytically to the Bertotti-Robinson space. The interpretation of the solutions obtained and an indication on the internal structure of the Schwarzschild black hole are discussed.Comment: 14 pages, latex, 1 figure; v2: a note on S2*S2 type solutions adde

    No-go theorem for bimetric gravity with positive and negative mass

    Full text link
    We argue that the most conservative geometric extension of Einstein gravity describing both positive and negative mass sources and observers is bimetric gravity and contains two copies of standard model matter which interact only gravitationally. Matter fields related to one of the metrics then appear dark from the point of view of an observer defined by the other metric, and so may provide a potential explanation for the dark universe. In this framework we consider the most general form of linearized field equations compatible with physically and mathematically well-motivated assumptions. Using gauge-invariant linear perturbation theory, we prove a no-go theorem ruling out all bimetric gravity theories that, in the Newtonian limit, lead to precisely opposite forces on positive and negative test masses.Comment: 19 pages, no figures, journal versio

    1861-07-15 Samuel York inquires about the 2nd Regiment\u27s term of service

    Get PDF
    https://digitalmaine.com/cw_me_2nd_regiment_corr/1074/thumbnail.jp

    Conformal thin-sandwich puncture initial data for boosted black holes

    Full text link
    We apply the puncture approach to conformal thin-sandwich black-hole initial data. We solve numerically the conformal thin-sandwich puncture (CTSP) equations for a single black hole with non-zero linear momentum. We show that conformally flat solutions for a boosted black hole have the same maximum gravitational radiation content as the corresponding Bowen-York solution in the conformal transverse-traceless decomposition. We find that the physical properties of these data are independent of the free slicing parameter.Comment: 12 pages, 11 figure
    corecore