4,047 research outputs found

    Identification of shared genetic risks underlying metabolic syndrome and its related traits in the Korean population

    Get PDF
    Introduction: Observational studies have demonstrated strong correlations between metabolic syndrome (MetS) and its related traits. To gain insight into the genetic architecture and molecular mechanism of MetS, we investigated the shared genetic basis of MetS and its related traits and further tested their causal relationships.Methods: Using summary statistics from genome-wide association analyses of about 72,000 subjects from the Korean Genome and Epidemiological Study (KoGES), we conducted genome-wide multi-trait analyses to quantify the overall genetic correlation and Mendelian randomization analyses to infer the causal relationships between traits of interest.Results: Genetic correlation analyses revealed a significant correlation of MetS with its related traits, such as obesity traits (body mass index and waist circumference), lipid traits (triglyceride and high-density lipoprotein cholesterol), glycemic traits (fasting plasma glucose and hemoglobin A1C), and blood pressure (systolic and diastolic). Mendelian randomization analyses further demonstrated that the MetS-related traits showing significant overall genetic correlation with MetS could be genetically determined risk factors for MetS.Discussion: Our study suggests a shared genetic basis of MetS and its related traits and provides novel insights into the biological mechanisms underlying these complex traits. Our findings further inform public health interventions by supporting the important role of the management of metabolic risk factors such as obesity, unhealthy lipid profiles, diabetes, and high blood pressure in the prevention of MetS

    User centric cloud service model in public sectors: Policy implications of cloud services

    Full text link
    This study examines the acceptance of cloud computing services in government agencies by focusing on the key characteristics that affect behavioral intent. The study expanded upon the technology acceptance model by incorporating contextual factors such as availability, access, security, and reliability. The research model was empirically verified by investigating the perception of users working in public institutions. Modeling results showed that user intentions and behaviors were largely influenced by the perceived features of cloud services. Also these features were found to be the significant antecedents of cloud computing usefulness and ease of use. The findings should guide governments' promotion of cloud public services to increase user awareness by enhancing usability and appeal and ensuring security

    A socio-technical framework for Internet-of-Things design

    Full text link
    This study presents a case application of a socio-technical framework to assess and predict the development of the Internet of Things (IoT) in Korea. Applying a socio-technical system approach to the IoT, this paper seeks a clear understanding of how the IoT will evolve and stabilize in a smart environment. It investigates the complex interaction between social and technical aspects of the IoT, by highlighting the co-evolution, interaction, and interface, which constitute the next generation network environment. It describes the challenges in designing, deploying, and sustaining the diverse components of the IoT, and provides a snapshot of Korea's current approach to meeting this challenge. Finally, the findings of this study provide insights into these challenges and opportunities, by offering a socio-technical analysis of IoT development. The insights help to conceptualize how the IoT can be designed and situated within human-centered contexts

    pH-responsive high-density lipoprotein-like nanoparticles to release paclitaxel at acidic pH in cancer chemotherapy

    Get PDF
    Jae-Yoon Shin,1,* Yoosoo Yang,1,* Paul Heo,1 Ji-Chun Lee,1 ByoungJae Kong,1 Jae Youl Cho,1 Keejung Yoon,1 Cheol-Su Shin,2 Jin-Ho Seo,3 Sung-Gun Kim,4 Dae-Hyuk Kweon11Department of Genetic Engineering, College of Biotechnology and Bioengineering, and Center for Human Interface Nano Technology, Sungkyunkwan University, 2APTech Research Center, Suwon, 3Department of Agricultural Biotechnology, Seoul National University, Seoul, 4Department of Biomedical Science, Youngdong University, Chungbuk, South Korea*These authors contributed equally to this workBackground: Nanoparticles undergoing physicochemical changes to release enclosed drugs at acidic pH conditions are promising vehicles for antitumor drug delivery. Among the various drug carriers, high-density lipoprotein (HDL)-like nanoparticles have been shown to be beneficial for cancer chemotherapy, but have not yet been designed to be pH-responsive.Methods and results: In this study, we developed a pH-responsive HDL-like nanoparticle that selectively releases paclitaxel, a model antitumor drug, at acidic pH. While the well known HDL-like nanoparticle containing phospholipids, phosphatidylcholine, and apolipoprotein A-I, as well as paclitaxel (PTX-PL-NP) was structurally robust at a wide range of pH values (3.8–10.0), the paclitaxel nanoparticle that only contained paclitaxel and apoA-I selectively released paclitaxel into the medium at low pH. The paclitaxel nanoparticle was stable at physiological and basic pH values, and over a wide range of temperatures, which is a required feature for efficient cancer chemotherapy. The homogeneous assembly enabled high paclitaxel loading per nanoparticle, which was 62.2% (w/w). The molar ratio of apolipoprotein A-I and paclitaxel was 1:55, suggesting that a single nanoparticle contained approximately 110 paclitaxel particles in a spherical structure with a 9.2 nm diameter. Among the several reconstitution methods applied, simple dilution following sonication enhanced the reconstitution yield of soluble paclitaxel nanoparticles, which was 0.66. As a result of the pH responsiveness, the anticancer effect of paclitaxel nanoparticles was much more potent than free paclitaxel or PTX-PL-NP.Conclusion: The anticancer efficacy of both paclitaxel nanoparticles and PTX-PL-NP was dependent on the expression of scavenger receptor class B type I, while the killing efficacy of free paclitaxel was independent of this receptor. We speculate that the pH responsiveness of paclitaxel nanoparticles enabled efficient endosomal escape of paclitaxel before lysosomal break down. This is the first report on pH-responsive nanoparticles that do not contain any synthetic polymer.Keywords: pH responsiveness, nanoparticle, apolipoprotein A-I, paclitaxe
    • …
    corecore