4 research outputs found

    Recurrence of Proliferative Glomerulonephritis with Monoclonal Immunoglobulin G Deposits with a Striated Ultrastructure

    Full text link
    This is the peer-reviewed but unedited manuscript version of the following article: Nephron 2020;144(suppl 1):43–48 (DOI: 10.1159/000512330)]. The final, published version is available at http://www.karger.com/?doi=10.1159/000512330

    MondoA and AKI and AKI-to-CKD Transition

    Get PDF
    Maeda S., Sakai S., Takabatake Y., et al. MondoA and AKI and AKI-to-CKD Transition. Journal of the American Society of Nephrology , (2024); https://doi.org/10.1681/ASN.0000000000000414.Key PointsThe expression of MondoA was decreased in the renal tubules of patients with CKD.Genetic ablation of MondoA in proximal tubules inhibited autophagy and increased vulnerability to AKI through increased expression of Rubicon.MondoA ablation during the recovery phase after ischemia-reperfusion aggravated kidney injury through downregulation of the transcription factor EB-peroxisome proliferator-activated receptor-γ coactivator-1α axis.BackgroundElderly individuals and patients with CKD are at a higher risk of AKI. The transcription factor MondoA is downregulated in the kidneys of aged individuals or patients with AKI; however, its roles in AKI development and the AKI-to-CKD transition remain unknown.MethodsWe investigated the expression of MondoA in human kidney biopsy samples, ischemia-reperfusion-injured (IRI) mouse kidneys, and cultured proximal tubular epithelial cells under hypoxia/reoxygenation. The role of MondoA during the initial and recovery phases after IRI was evaluated using proximal tubule-specific MondoA knockout mice and MondoA-deficient proximal tubular epithelial cells. Furthermore, we explored the involvement of Rubicon and transcription factor EB (TFEB), both of which are downstream factors of MondoA.ResultsMONDOA expression was decreased in the renal tubules of patients with CKD. In mouse kidneys, MondoA expression was decreased under ischemia, whereas its expression was increased during reperfusion. Genetic ablation of MondoA in proximal tubular epithelial cells inhibited autophagy and increased vulnerability to AKI through increased expression of Rubicon. Ablation of Rubicon in MondoA-deficient IRI kidneys activated autophagy and protected mitochondrial function. MondoA ablation during the recovery phase after ischemia-reperfusion aggravated kidney injury through downregulation of the TFEB-peroxisome proliferator-activated receptor-γ coactivator-1α axis. Pharmacological upregulation of TFEB contributed to maintaining mitochondrial biogenesis and increased peroxisome proliferator-activated receptor-γ coactivator-1α transcription.ConclusionsOur findings demonstrate that MondoA protected against vulnerability to AKI by maintaining autophagy and subsequently supporting mitochondrial function to prevent progression to CKD

    TFEB-mediated lysosomal exocytosis alleviates high fat diet-induced lipotoxicity in the kidney

    No full text
    : Obesity is a major risk factor for end-stage kidney disease. We previously found that lysosomal dysfunction and impaired autophagic flux contributed to lipotoxicity in obesity-related kidney disease, both in humans and experimental animal models. However, the regulatory factors involved in countering renal lipotoxicity are largely unknown. Here we found that palmitic acid (PA) strongly promoted dephosphorylation and nuclear translocation of transcription factor EB (TFEB) by inhibiting the mechanistic target of rapamycin kinase complex 1 (MTORC1) pathway in a Rag GTPase-dependent manner, although these effects gradually diminished after extended treatment. We then investigated the role of TFEB in the pathogenesis of obesity-related kidney disease. Proximal tubular epithelial cell (PTEC)-specific Tfeb-deficient mice fed a high-fat diet (HFD) exhibited greater phospholipid accumulation in enlarged lysosomes, which manifested as multilamellar bodies (MLBs). Activated TFEB mediated lysosomal exocytosis of phospholipids, which help reduce MLB accumulation in PTECs. Furthermore, HFD-fed PTEC-specific Tfeb-deficient mice showed autophagic stagnation and exacerbated injury upon renal ischemia-reperfusion. Finally, higher body mass index was associated with increased vacuolation and decreased nuclear TFEB in the proximal tubules of chronic kidney disease patients. These results indicate a critical role of TFEB-mediated lysosomal exocytosis in counteracting renal lipotoxicity
    corecore