1,482 research outputs found

    ResumeNet: A Learning-based Framework for Automatic Resume Quality Assessment

    Full text link
    Recruitment of appropriate people for certain positions is critical for any companies or organizations. Manually screening to select appropriate candidates from large amounts of resumes can be exhausted and time-consuming. However, there is no public tool that can be directly used for automatic resume quality assessment (RQA). This motivates us to develop a method for automatic RQA. Since there is also no public dataset for model training and evaluation, we build a dataset for RQA by collecting around 10K resumes, which are provided by a private resume management company. By investigating the dataset, we identify some factors or features that could be useful to discriminate good resumes from bad ones, e.g., the consistency between different parts of a resume. Then a neural-network model is designed to predict the quality of each resume, where some text processing techniques are incorporated. To deal with the label deficiency issue in the dataset, we propose several variants of the model by either utilizing the pair/triplet-based loss, or introducing some semi-supervised learning technique to make use of the abundant unlabeled data. Both the presented baseline model and its variants are general and easy to implement. Various popular criteria including the receiver operating characteristic (ROC) curve, F-measure and ranking-based average precision (AP) are adopted for model evaluation. We compare the different variants with our baseline model. Since there is no public algorithm for RQA, we further compare our results with those obtained from a website that can score a resume. Experimental results in terms of different criteria demonstrate the effectiveness of the proposed method. We foresee that our approach would transform the way of future human resources management.Comment: ICD

    Projection-based reduced order modeling and data-driven artificial viscosity closures for incompressible fluid flows

    Full text link
    Projection-based reduced order models rely on offline-online model decomposition, where the data-based energetic spatial basis is used in the expensive offline stage to obtain equations of reduced states that evolve in time during the inexpensive online stage. The online stage requires a solution method for the dynamic evolution of the coupled system of pressure and velocity states for incompressible fluid flows. The first contribution of this article is to demonstrate the applicability of the incremental pressure correction scheme for the dynamic evolution of pressure and velocity states. The evolution of a large number of these reduced states in the online stage can be expensive. In contrast, the accuracy significantly decreases if only a few reduced states are considered while not accounting for the interactions between unresolved and resolved states. The second contribution of this article is to compare three closure model forms based on global, modal and tensor artificial viscosity approximation to account for these interactions. The unknown model parameters are determined using two calibration techniques: least squares minimization of error in energy approximation and closure term approximation. This article demonstrates that an appropriate selection of solution methods and data-driven artificial viscosity closure models is essential for consistently accurate dynamics forecasting of incompressible fluid flows

    Design of a large dynamic range readout unit for the PSD detector of DAMPE

    Full text link
    A large dynamic range is required by the Plastic Scintillator Detector (PSD) of DArk Matter Paricle Explorer (DAMPE), and a double-dynode readout has been developed. To verify this design, a prototype detector module has been constructed and tested with cosmic rays and heavy ion beams. The results match with the estimation and the readout unit could easily cover the required dynamic range
    corecore