185 research outputs found

    The influence of cultural exchange on international trade: an empirical test of Confucius Institutes based on China and the ‘Belt and Road’ areas

    Get PDF
    With the implementation of the Belt and Road initiative, the development of trade governance between China and countries along the line has expanded. Firstly, this paper analyzes the impact of cultural exchanges through Confucius Institutes on regional trade cooperation from three dimensions: improving cultural identity, reducing trade costs and sharing information. Secondly, we utilise data trade data from the 64 countries along the line from 2004 to 2015 to examine the effects of Confucius Institutes in regional trade cooperation with China. Overall, we found that Confucius Institutes have significantly promoted the trade growth of China and those countries. Compared to exports, Confucius Institutes promote greater growth imports to the Belt and Road countries from China. Compared to countries in the Road, Confucius Institutes better promoted trade growth between China and countries in the Belt. This empirical conclusion stands under various robustness tests. Forth, after the 12th five-yearplan, the promoting effects of the Confucius Institute has been strengthening. Fifth, the smaller the cultural distance, the stronger the promoting effects of the Confucius Institute on the trade in BRI countries. However, the effect of language similarity is not significant. This study indicates that the Chinese government should pay more attention to the economic effects of cultural factors, such as the Confucius Institute, in policy design

    Near-Optimal Interference Exploitation 1-Bit Massive MIMO Precoding via Partial Branch-and-Bound

    Get PDF
    In this paper, we focus on 1-bit precoding for large-scale antenna systems in the downlink based on the concept of constructive interference (CI). By formulating the optimization problem that aims to maximize the CI effect subject to the 1-bit constraint on the transmit signals, we mathematically prove that, when relaxing the 1-bit constraint, the majority of the obtained transmit signals already satisfy the 1-bit constraint. Based on this important observation, we propose a 1-bit precoding method via a partial branch-and-bound (P-BB) approach, where the BB procedure is only performed for the entries that do not comply with the 1-bit constraint. The proposed P-BB enables the use of the BB framework in large-scale antenna scenarios, which was not applicable due to its prohibitive complexity. Numerical results demonstrate a near-optimal error rate performance for the proposed 1-bit precoding algorithm.Comment: accepted by IEEE ICASSP202

    Construction and Performance of Quantum Burst Error Correction Codes for Correlated Errors

    Full text link
    © 2018 IEEE. In practical communication and computation systems, errors occur predominantly in adjacent positions rather than in a random manner. In this paper, we develop a stabilizer formalism for quantum burst error correction codes (QBECC) to combat such error patterns in the quantum regime. Our contributions are as follows. Firstly, we derive an upper bound for the correctable burst errors of QBECCs, the quantum Reiger bound (QRB). Secondly, we propose two constructions of QBECCs: one by heuristic computer search and the other by concatenating two quantum tensor product codes (QTPCs). We obtain several new QBECCs with better parameters than existing codes with the same coding length. Moreover, some of the constructed codes can saturate the quantum Reiger bounds. Finally, we perform numerical experiments for our constructed codes over Markovian correlated depolarizing quantum memory channels, and show that QBECCs indeed outperform standard QECCs in this scenario

    Label Transfer from APOGEE to LAMOST: Precise Stellar Parameters for 450,000 LAMOST Giants

    Get PDF
    In this era of large-scale stellar spectroscopic surveys, measurements of stellar attributes ("labels," i.e. parameters and abundances) must be made precise and consistent across surveys. Here, we demonstrate that this can be achieved by a data-driven approach to spectral modeling. With The Cannon, we transfer information from the APOGEE survey to determine precise Teff, log g, [Fe/H], and [α\alpha/M] from the spectra of 450,000 LAMOST giants. The Cannon fits a predictive model for LAMOST spectra using 9952 stars observed in common between the two surveys, taking five labels from APOGEE DR12 as ground truth: Teff, log g, [Fe/H], [\alpha/M], and K-band extinction AkA_k. The model is then used to infer Teff, log g, [Fe/H], and [α\alpha/M] for 454,180 giants, 20% of the LAMOST DR2 stellar sample. These are the first [α\alpha/M] values for the full set of LAMOST giants, and the largest catalog of [α\alpha/M] for giant stars to date. Furthermore, these labels are by construction on the APOGEE label scale; for spectra with S/N > 50, cross-validation of the model yields typical uncertainties of 70K in Teff, 0.1 in log g, 0.1 in [Fe/H], and 0.04 in [α\alpha/M], values comparable to the broadly stated, conservative APOGEE DR12 uncertainties. Thus, by using "label transfer" to tie low-resolution (LAMOST R \sim 1800) spectra to the label scale of a much higher-resolution (APOGEE R \sim 22,500) survey, we substantially reduce the inconsistencies between labels measured by the individual survey pipelines. This demonstrates that label transfer with The Cannon can successfully bring different surveys onto the same physical scale.Comment: 27 pages, 14 figures. Accepted by ApJ on 16 Dec 2016, implementing suggestions from the referee reports. Associated code available at https://github.com/annayqho/TheCanno

    Revealing the interface structure and bonding mechanism of coupling agent treated WPC

    Get PDF
    © 2018 by the authors. This paper presents the interfacial optimisation of wood plastic composites (WPC) based on recycled wood flour and polyethylene by employing maleated and silane coupling agents. The effect of the incorporation of the coupling agents on the variation of chemical structure of the composites were investigated by Attenuated total reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and Solid state 13 C Nuclear Magnetic Resonance spectroscopy (NMR) analyses. The results revealed the chemical reactions that occurred between the coupling agents and raw materials, which thus contributed to the enhancement of compatibility and interfacial adhesion between the constituents of WPC. NMR results also indicated that there existed the transformation of crystalline cellulose to an amorphous state during the coupling agent treatments, reflecting the inferior resonance of crystalline carbohydrates. Fluorescence Microscope (FM) and Scanning Electron Microscope (SEM) analyses showed the improvements of wood particle dispersion and wettability, compatibility of the constituents, and resin penetration, and impregnation of the composites after the coupling agent treatments. The optimised interface of the composites was attributed to interdiffusion, electrostatic adhesion, chemical reactions, and mechanical interlocking bonding mechanisms

    Factors influencing self-healing mechanisms of cementitious materials: A review

    Get PDF
    The increasing awareness of climate change and global warming has pushed industries to be more conscious of their environmental impact, especially in the construction industry with the main contributor being concrete. Concrete is a material that is in very high demand in the construction industry for structural applications. However, it’s a material with a major concern with the challenges of microcracking. New technology has seen the development of self-healing material, using novel techniques to bring cementitious materials back to its original state. This paper reviews and evaluates the novel techniques adopted by the researchers in the field to achieve a self-healing material, with the main focus being on the factors influencing the mechanisms of autogenous healing and bacteria-based healing. Various parameters including bacteria type, pH, temperature, nutrient, urea, and Ca2+ concentration, bacteria concentration and application, pre-cracking, healing condition, cement type, and crack width are all important for healing efficiency, although the use of water to facilitate both autogenous and ureolytic bacteria healing mechanism is paramount for the triggering of healing processes. This study thoroughly presents various factors and their correlation to the healing mechanisms of autogenous healing and ureolytic bacteria healing. Further studies are identified to better understand the exact mechanism taking place and which healing process contributed to how much of the healing, and this review could serve as an informative platform for these pursues
    corecore