18 research outputs found

    Fabrication of Anion-Exchange Polymer Layered Graphene–Melamine Electrodes for Membrane Capacitive Deionization

    No full text
    A novel nitrogen-doped reduced graphene sponge composite (NRGS) is fabricated by using melamine sponge to restrain the aggregation of graphene sheets during reduction. The anion-exchange polymer layered graphene composites (A-NRGS) are prepared by coating the surface of the NRGS electrode with cross-linked poly­(vinyl alcohol) with quaternization modification (C-qPVA). With the help of a melamine sponge to suppress the agglomerate of graphene sheets, the NRGS exhibits a unique three-dimensional (3D) interconnected porous structure with abundant nitrogen doping of 5.2%. Its specific surface area is up to 241 m<sup>2</sup>/g. In addition, the enhanced wettability of A-NRGS composites favors the diffusion of ion from the electrolyte to electrode. Therefore, A-NRGS composites have excellent electrochemical capacity (184 F/g). The membrane capacitive deionization (MCDI) performance for A-NRGS electrode (11.3 mg/g) is higher than that of pristine reduced graphene oxide (RGO) (6.2 mg/g) and NRGS (8.6 mg/g) electrodes. All the results demonstrate that A-NRGS composites can be a promising candidate for CDI and other electrochemical applications

    A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors

    No full text
    We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly­(ethylene oxide) block (A) and terminal poly­(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device

    A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors

    No full text
    We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly­(ethylene oxide) block (A) and terminal poly­(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device

    Thermoresponsive Melamine Sponges with Switchable Wettability by Interface-Initiated Atom Transfer Radical Polymerization for Oil/Water Separation

    No full text
    Here we have obtained a temperature responsive melamine sponge with a controllable wettability between superhydrophilicity and superhydrophobicity by grafting the octadecyltrichlorosilane and thermoresponsive poly­(<i>N</i>-isopropylacrylamide) (PNIPAAm) onto the surface of melamine sponge skeletons. The whole process included the silanization in which step the rough surface with low surface energy and the NH<sub>2</sub> were provided, and the atom transfer radical polymerization which ensured the successful grafting of PNIPAAm onto the skeleton’s surface. The product exhibits a good reversible switch between superhydrophilicity and superhydrophobicity by changing the temperature below or above the lower critical solution temperature (LCST, about 32 °C) of PNIPAAm, and the modified sponge still retains a good responsiveness after undergoing two temperature switches for 20 cycles. Simultaneously, the functionalized sponges could be used to absorb the oil under water at 37 °C, and they released the absorbed oil in various ways under water at 20 °C, showing wide potential applications including oil/water separation

    Renewable Lignin-Based Xerogels with Self-Cleaning Properties and Superhydrophobicity

    No full text
    A novel dissocyanate-modified lignin xerogel is facilely prepared using renewable lignin as precursors via a sol–gel process and ambient pressure drying method. The xerogel possesses high performance in self-cleaning and superhydrophobicity with no need for further hydrophobic modification. Furthermore, the xerogel obtained can find potential applications in absorbents, coatings, and scaffolds

    H- and J‑Aggregation of Fluorene-Based Chromophores

    No full text
    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 2<sub>1</sub> helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π–π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with “isolated” chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. “Isolated” chromophores not only refer to “isolated molecules” but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable absorption and emission derived from various interchain interactions, unlike the β phase, which has relatively fixed absorption and emission derived from an intrachain interaction

    Preparation of Photoresponsive Azo Polymers Based on Lignin, a Renewable Biomass Resource

    No full text
    Lignin-based azo polymers are prepared from alkali lignin, a byproduct in spent liquor from the pulping and papermaking industry, and their structures and photochromic effects are characterized by elemental analysis, Fourier transform infrared, <sup>1</sup>H nuclear magnetic resonance, and ultraviolet–visible spectroscopy. Results show that only the 2-(4-nitrophenyl azo) phenol lignin-modified polymer (AL-azo-NO<sub>2</sub>) shows a significant photochromic effect, and its photoresponsive behavior is evidently slower than that of the synthetic polymer with a similar azo chromophore. For the 2-(4-methoxyphenyl azo) phenol lignin-modified polymer, its photoisomerization behavior was expected to be similar to that of azobenzene-type molecules, but its photoresponse is not obvious. The abnormal photochromic effect of AL-azo polymers is related to strong steric hindrance of lignin backbones. With addition of water (poor solvent), AL-azo-NO<sub>2</sub> shrinks gradually, which prevents azobenzene groups from isomerizing and results in a lower isomerization efficiency at higher water contents. Preparation of lignin-based azo polymers offers a novel source of azo polymers and provides a green and sustainable pathway for value-added utilization of lignin biomass recovered from the pulping industry

    Fabrication of Lignosulfonate Vesicular Reverse Micelles to Immobilize Horseradish Peroxidase

    No full text
    Sodium lignosulfonate reverse micelles (SLRMs) with vesicular structure were prepared by self-assembling in ethanol–water media and applied to encapsulate horseradish peroxidase (HRP). Results showed that sodium lignosulfonate (SL) could not form SLRMs until the ethanol content reached 63% when its initial concentration was 7.5 g L<sup>–1</sup>. Owing to strong electrostatic repulsion, solid spherical SLRMs gradually swelled to stable vesicular structures with an average size of 240 nm. The shell of the SLRM thickened when NaCl was added to screen the electrostatic interaction. HRP can be effectively encapsulated while retaining its activity in the hydrophilic core of a SLRM. When hydrogen peroxide was added to initiate the catalytic activity of HRP, SL molecules would be polymerized and the structure of SLRMs would be fixed. Furthermore, HRP immobilized in polymerized SLRMs showed high activity at a more acidic pH of 4 and at a lower optimal temperature decrease of 35 °C compared to free HRP. SLRM allows enzymes such as HRP to work at more acidic and lower temperature conditions

    Conductivity Enhancement of Poly(3,4-ethylenedioxythiophene)/Lignosulfonate Acid Complexes via Pickering Emulsion Polymerization

    No full text
    Poly­(3,4-ethylenedioxythiophene)/lignosulfonate acid (PEDOT/LS) submicron particles are doped into a 3,4-ethylenedioxythiophene (EDOT)/water mixture as a solid stabilizer to form a Pickering emulsion. The conductivity of the new PEDOT/LS complexes prepared by Pickering emulsion polymerization (PEDOT/LS-PEP) is improved by 2 orders of magnitude. The structure and properties of PEDOT/LS-PEP are investigated by UV, FTIR, XRD, XPS, DLS, optical microscope, four point probe meter, and surface resistance tester. The results show that the average particle size increases from 550 nm to 2.4 μm, and the PEDOT content in PEDOT/LS-PEP is 3.5 times that in the original PEDOT/LS submicron particles, while the structure of PEDOT/LS-PEP remains amorphous. Due to the enhancement in conductivity, the coating film made by PEDOT/LS-PEP decreases the surface resistance of glass from 10<sup>12</sup> to 10<sup>6</sup> Ω sq<sup>–1</sup>. These new PEDOT/LS-PEP complexes meet the requirement of industrial antistatic materials well

    Biobased Self-Growing Approach toward Tailored, Integrated High-Performance Flexible Lithium-Ion Battery

    No full text
    Here we present an innovative, universal, scalable, and straightforward strategy for cultivating a resilient, flexible lithium-ion battery (LIB) based on the bacterial-based self-growing approach. The electrodes and separator layers are integrated intrinsically into one unity of sandwich bacterial cellulose integrated film (SBCIF), with various active material combinations and tailored mechanical properties. The flexible LIB thereof showcases prominent deformation tolerance and multistage foldability due to the unique self-generated wavy-like structure. The LTO|LFP (Li4Ti5O12 and LiFePO4) SBCIF-based flexible LIB demonstrates reliable long-term electrochemical stability with high flexibility, by exhibiting a high capacity retention (>95%) after 500 cycles at 1C/1C after experiencing a 10 000 bending/flattening treatment. The LTO|LFP SBCIF battery subjected to a simultaneous bending/flattening and cycling experiment shows an extraordinary capacity retention rate (>68%) after 200 cycles at 1C/1C. The biobased self-growing approach offers an exciting and promising pathway toward the tailored, integrated high-performance flexible LIBs
    corecore