203 research outputs found

    Potential Passenger Flow Prediction: A Novel Study for Urban Transportation Development

    Full text link
    Recently, practical applications for passenger flow prediction have brought many benefits to urban transportation development. With the development of urbanization, a real-world demand from transportation managers is to construct a new metro station in one city area that never planned before. Authorities are interested in the picture of the future volume of commuters before constructing a new station, and estimate how would it affect other areas. In this paper, this specific problem is termed as potential passenger flow (PPF) prediction, which is a novel and important study connected with urban computing and intelligent transportation systems. For example, an accurate PPF predictor can provide invaluable knowledge to designers, such as the advice of station scales and influences on other areas, etc. To address this problem, we propose a multi-view localized correlation learning method. The core idea of our strategy is to learn the passenger flow correlations between the target areas and their localized areas with adaptive-weight. To improve the prediction accuracy, other domain knowledge is involved via a multi-view learning process. We conduct intensive experiments to evaluate the effectiveness of our method with real-world official transportation datasets. The results demonstrate that our method can achieve excellent performance compared with other available baselines. Besides, our method can provide an effective solution to the cold-start problem in the recommender system as well, which proved by its outperformed experimental results

    3DAxiesPrompts: Unleashing the 3D Spatial Task Capabilities of GPT-4V

    Full text link
    In this work, we present a new visual prompting method called 3DAxiesPrompts (3DAP) to unleash the capabilities of GPT-4V in performing 3D spatial tasks. Our investigation reveals that while GPT-4V exhibits proficiency in discerning the position and interrelations of 2D entities through current visual prompting techniques, its abilities in handling 3D spatial tasks have yet to be explored. In our approach, we create a 3D coordinate system tailored to 3D imagery, complete with annotated scale information. By presenting images infused with the 3DAP visual prompt as inputs, we empower GPT-4V to ascertain the spatial positioning information of the given 3D target image with a high degree of precision. Through experiments, We identified three tasks that could be stably completed using the 3DAP method, namely, 2D to 3D Point Reconstruction, 2D to 3D point matching, and 3D Object Detection. We perform experiments on our proposed dataset 3DAP-Data, the results from these experiments validate the efficacy of 3DAP-enhanced GPT-4V inputs, marking a significant stride in 3D spatial task execution

    A Novel STAP Algorithm for Airborne MIMO Radar Based on Temporally Correlated Multiple Sparse Bayesian Learning

    Get PDF
    In a heterogeneous environment, to efficiently suppress clutter with only one snapshot, a novel STAP algorithm for multiple-input multiple-output (MIMO) radar based on sparse representation, referred to as MIMOSR-STAP in this paper, is presented. By exploiting the waveform diversity of MIMO radar, each snapshot at the tested range cell can be transformed into multisnapshots for the phased array radar, which can estimate the high-resolution space-time spectrum by using multiple measurement vectors (MMV) technique. The proposed approach is effective in estimating the spectrum by utilizing Temporally Correlated Multiple Sparse Bayesian Learning (TMSBL). In the sequel, the clutter covariance matrix (CCM) and the corresponding adaptive weight vector can be efficiently obtained. MIMOSR-STAP enjoys high accuracy and robustness so that it can achieve better performance of output signal-to-clutter-plus-noise ratio (SCNR) and minimum detectable velocity (MDV) than the single measurement vector sparse representation methods in the literature. Thus, MIMOSR-STAP can deal with badly inhomogeneous clutter scenario more effectively, especially suitable for insufficient independent and identically distributed (IID) samples environment

    Microbial profiling identifies potential key drivers in gastric cancer patients

    Get PDF
    Gastric cancer (GC) is the fifth most commonly diagnosed cancer and the third leading cause of cancer-related death in the world. Microbiota is believed to be associated with GC. Growing evidences showed Helicobacter pylori played a key role in GC development. However, little was known about the microbiota in gastric juices and tissues in GC patients, and thus it was difficult to understand other potential microbial causation for GC. Here, we collected the gastric juice and surgically removed gastric tissues from GC patients to give insight into GC microbiota. Most microbes identified in the gastric samples were opportunistic pathogens or resident flora of the human microbiota. Further network analyses identified five opportunistic pathogens as keystone species. H. pylori is the direct cause of GC, but other opportunistic microbes might also function in GC development. The microbiota in the gastric juice and gastric tissue of the GC patients were complex, and some dominant opportunistic pathogens contributed to the GC development. This study introduces microbiota in gastric juice, gastric normal tissue and gastric cancer tissue of GC patients, and highlights the potential keystone microbes functioned during GC development

    High-throughput Sequencing to Analyze Changes in the Structural Diversity of the Flora of Cheddar Cheese during Processing

    Get PDF
    In order to clarify the microflora structure in Cheddar cheese processing, MiSeq high-throughput sequencing technology was used to analyze the community structure of Cheddar cheese at three stages of processing (post-pasteurization, curdling, and ripening 0, 30, 60 and 90 d) in this study. The results showed that the community structure varies widely of cheddar cheese during processing. The highest microbial community diversity and abundance were found after pasteurization (Chao1 index and Shannon index mean values were 6.09 and 1415.78, respectively). The dominant microflora in the pasteurization stage at the genus level was Stenotrophomonas (21.04%). The community structure was relatively similar in the curd and ripening stages, Lactococcus were the dominant flora in both stages, with abundance averaging more than 85%. During the ripening period, the relative abundance of Lactococcus increased first and then decreased. The community structure in the pasteurized cheeses was different compared to the other groups, and there was less change in the community structure of the groups during the ripening period. This study provides a basis for clarifying the community structure of Cheddar cheese, and has a certain reference value for the expansion of Cheddar cheese microbiome information

    Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats

    Get PDF
    Umbilical cord mesenchymal stem cells (UCMSCs) are a reportedly promising choice in the treatment of irreversible pulmonary fibrosis and lethal interstitial lung disease with limited drug treatment options. In this study, we investigated the therapeutic efficacy of UCMSCs overexpressing hepatocyte growth factor (HGF), which is considered one of the main anti-fibrotic factors secreted by MSCs. Adenovirus vector carrying the HGF gene was transfected into UCMSCs to produce HGF-modified UCMSCs (HGF-UCMSCs). Transfection promoted the proliferation of UCMSCs and did not change the morphology, and differentiation ability, or biomarkers. Rats were injected with HGF-UCMSCs on days 7 and 11 after intratracheal administration of bleomycin (10 mg/kg). We performed an analysis of histopathology and lung function to evaluate the anti-fibrotic effect. The results showed that HGF-UCMSCs decreased the Ashcroft scores in hematoxylin and eosin-stained sections, the percentage positive area in Masson trichrome-stained sections, and the hydroxyproline level in lungs. Forced expiratory volume in the first 300 m/forced vital capacity was also improved by HGF-UCMSCs. To explore the possible therapeutic mechanism of HGF-UCMSCs, we detected inflammatory factors in the lungs and performed mRNA sequencing in UCMSCs and HGF-UCMSCs. The data indicated that inhibition of interleukin-17 in the lung may be related to the anti-fibrosis of HGF-UCMSCs, and overexpressed HGF probably played a primary role in the treatment. Collectively, our study findings suggested that the overexpression of HGF may improve the anti-fibrotic effect of UCMSCs through directly or indirectly interacting with interleukin-17-producing cells in fibrotic lungs

    Arterial Wall Stress Induces Phenotypic Switching of Arterial Smooth Muscle Cells in Vascular Remodeling by Activating the YAP/TAZ Signaling Pathway

    Get PDF
    Background/Aims: Increasing wall stress or biomechanical stretch experienced by arteries influences the initiation of atherosclerotic lesions. This initiation is mediated by Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which are both effectors of the Hippo pathway. In this study, the functional roles of YAP/TAZ proteins in the regulation of the stretch-mediated programing of human umbilical arterial smooth muscle cells (HUASMCs) to a proliferative phenotype were examined. Methods: HUASMCs were seeded on a Matrigel-coated silicone chamber and subjected to biomechanical stretch for 24 h after 48 h of growth. YAP/TAZ small interfering RNA was used to specifically knockdown YAP/ TAZ expression in HUASMCs. Results: We observed that YAP/TAZ activation via biomechanical stretching is involved in the regulation of critical aspects of the HUASMC phenotypic switch. YAP/TAZ knockdown significantly attenuated the stretch-induced proliferative and pro-inflammatory phenotypes in HUASMCs. Furthermore, treatment with atorvastatin, an anti-atherosclerotic drug, attenuated the stretch-induced phenotypic switch of HUASMCs from the contractile to synthetic state by suppressing YAP/TAZ expression. Additional investigations demonstrated the role of stretch in inhibiting the Hippo pathway, leading to the activation of PI3-kinase (PI3K) and phosphoinositide dependent kinase (PDK1); the key molecule for the regulation of the PDK1 and Hippo complex interaction was Sav1. These results showed the importance of YAP/TAZ activation, induced by biomechanical stretch, in promoting atheroprone phenotypes in HUASMCs. Conclusion: Taken together, our findings revealed a mechanism by which YAP/TAZ activation contributes to the pathogenesis of atherosclerosis

    Administration of Interleukin-35-Conditioned Autologous Tolerogenic Dendritic Cells Prolong Allograft Survival After Heart Transplantation

    Get PDF
    Background/Aims: IL-35, a powerful suppressor of inflammation and autoimmunity, is primarily secreted by regulatory T cells (Tregs) and can, in turn, promote Treg differentiation. However, the precise effect of IL-35 on dendritic cells (DCs) remains to be clarified. Methods: In this study, we investigated the expression of IL-35 in DCs after stimulation with LPS utilizing enzyme linked immunosorbent assay(ELISA), quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting, and the influence of IL-35 on the maturation and function of DCs by mixed lymphocyte reaction assay and flow cytometry. We further examined the regulation of IL-35 in DCs by the microRNA let-7i (let-7i) via transfected with let-7i mimic, inhibitor or suppressor of cytokine signalling 1 (SOCS1) siRNA. IL-35-overexpressing DCs were transfused into BALB/c recipients with C57BL/6 heart transplantations to verify the role of immune tolerance in transplantation. Results: The results showed that IL-35 expression was significantly up-regulated following lipopolysaccharide (LPS)-induced DC maturation. Overexpression of IL-35 suppressed DC maturation, promoted the secretion of anti-inflammatory cytokines, and subsequently affected the balance between Treg and Th17 cells. IL-35 expression in DCs was regulated by let-7i, which targets SOCS1. The transfusion of IL-35-transfected DCs induced Treg generation in mice and prolonged cardiac allograft survival. Conclusion: Our data demonstrated that IL-35 induces tolerogenic DCs which are capable of alleviating allograft rejection. Clinical application of IL-35-treated DCs might be a promising approach for eliciting cardiac allograft immune tolerance

    Expression of aspartyl protease and C3HC4-type RING zinc finger genes are responsive to ascorbic acid in Arabidopsis thaliana

    Get PDF
    Ascorbate (AsA) is a redox buffer and enzyme cofactor with various proposed functions in stress responses and growth. The aim was to identify genes whose transcript levels respond to changes in leaf AsA. The AsA-deficient Arabidopsis mutant vtc2-1 was incubated with the AsA precursor L-galactono-1,4-lactone (L-GalL) to increase leaf AsA concentration. Differentially expressed genes screened by DNA microarray were further characterized for AsA responsiveness in wild-type plants. The analysis of 14 candidates by real-time PCR identified an aspartyl protease gene (ASP, At1g66180) and a C3HC4-type RING zinc finger gene (AtATL15, At1g22500) whose transcripts were rapidly responsive to increases in AsA pool size caused by L-GalL and AsA supplementation and light. Transgenic Arabidopsis plants expressing an AtATL15 promoter::luciferase reporter confirmed that the promoter is L-GalL, AsA, and light responsive. The expression patterns of ASP and AtATL15 suggest they have roles in growth regulation. The promoter of AtATL15 is responsive to AsA status and will provide a tool to investigate the functions of AsA in plants further
    corecore