60 research outputs found

    Reverse Doppler Effect of Sound

    Full text link
    We report observation of reverse Doppler effect in a double negative acoustic metamaterial. The metamaterial exhibited negative phase velocity and positive group velocity. The dispersion relation is such that the wavelength corresponding to higher frequency is longer. We observed that the frequency was down-shifted for the approaching source, and up-shifted when the source receded

    Acoustic metamaterial exhibiting four different sign combinations of density and modulus

    Full text link
    We fabricated a double negative acoustic metamaterial which consisted of Helmholtz resonators and membranes. Experimental data on the transmission and dispersion relation are presented. The system exhibits three frequencies where the acoustic state makes sharp transitions from density negative ({\rho} -NG) to double negative (DNG), modulus negative (B-NG), and double positive (DPS) in sequence with the frequency. We observed a wide range of negative refractive index from -0.06 to -3.7 relative to air, which will allow for new acoustic transformation techniques.Comment: 5 pages, 4 figures, submitted to Physical Review Letter

    REGNET: Mining context-specific human transcription networks using composite genomic information

    Get PDF
    Background: Genome-wide expression profiles reflect the transcriptional networks specific to the given cell context. However, most statistical models try to estimate the average connectivity of the networks from a collection of gene expression data, and are unable to characterize the context-specific transcriptional regulations. We propose an approach for mining context-specific transcription networks from a large collection of gene expression fold-change profiles and composite gene-set information.Results: Using a composite gene-set analysis method, we combine the information of transcription factor binding sites, Gene Ontology or pathway gene sets and gene expression fold-change profiles for a variety of cell conditions. We then collected all the significant patterns and constructed a database of context-specific transcription networks for human (REGNET). As a result, context-specific roles of transcription factors as well as their functional targets are readily explored. To validate the approach, nine predicted targets of E2F1 in HeLa cells were tested using chromatin immunoprecipitation assay. Among them, five (Gadd45b, Dusp6, Mll5, Bmp2 and E2f3) were successfully bound by E2F1. c-JUN and the EMT transcription networks were also validated from literature.Conclusions: REGNET is a useful tool for exploring the ternary relationships among the transcription factors, their functional targets and the corresponding cell conditions. It is able to provide useful clues for novel cell-specific transcriptional regulations. The REGNET database is available at http://mgrc.kribb.re.kr/regnet.open0

    >1000-Fold Lifetime Extension of a Nickel Electromechanical Contact Device via Graphene

    Get PDF
    Micro-/nano-electromechanical (M/NEM) switches have received significant attention as promising switching devices for a wide range of applications such as computing, radio frequency communication, and power gating devices. However, M/NEM switches still suffer from unacceptably low reliability because of irreversible degradation at the contacting interfaces, hindering adoption in practical applications and further development. Here, we evaluate and verify graphene as a contact material for reliability-enhanced M/NEM switching devices. Atomic force microscopy experiments and quantum mechanics calculations reveal that energy-efficient mechanical contact–separation characteristics are achieved when a few layers of graphene are used as a contact material on a nickel surface, reducing the energy dissipation by 96.6% relative to that of a bare nickel surface. Importantly, graphene displays almost elastic contact–separation, indicating that little atomic-scale wear, including plastic deformation, fracture, and atomic attrition, is generated. We also develop a feasible fabrication method to demonstrate a MEM switch, which has high-quality graphene as the contact material, and verify that the devices with graphene show mechanically stable and elastic-like contact properties, consistent with our nanoscale contact experiment. The graphene coating extends the switch lifetime >103 times under hot switching conditions

    Myofilament Ca2+ desensitization mediates positive lusitropic effect of neuronal nitric oxide synthase in left ventricular myocytes from murine hypertensive heart

    Get PDF
    AbstractNeuronal nitric oxide synthase (NOS1 or nNOS) exerts negative inotropic and positive lusitropic effects through Ca2+ handling processes in cardiac myocytes from healthy hearts. However, underlying mechanisms of NOS1 in diseased hearts remain unclear. The present study aims to investigate this question in angiotensin II (Ang II)-induced hypertensive rat hearts (HP). Our results showed that the systolic function of left ventricle (LV) was reduced and diastolic function was unaltered (echocardiographic assessment) in HP compared to those in shams. In isolated LV myocytes, contraction was unchanged but peak [Ca2+]i transient was increased in HP. Concomitantly, relaxation and time constant of [Ca2+]i decay (tau) were faster and the phosphorylated fraction of phospholamban (PLN-Ser16/PLN) was greater. NOS1 protein expression and activity were increased in LV myocyte homogenates from HP. Surprisingly, inhibition of NOS1 did not affect contraction but reduced peak [Ca2+]i transient; prevented faster relaxation without affecting the tau of [Ca2+]i transient or PLN-Ser16/PLN in HP, suggesting myofilament Ca2+ desensitization by NOS1. Indeed, relaxation phase of the sarcomere length–[Ca2+]i relationship of LV myocytes shifted to the right and increased [Ca2+]i for 50% of sarcomere shortening (EC50) in HP. Phosphorylations of cardiac myosin binding protein-C (cMyBP-C282 and cMyBP-C273) were increased and cardiac troponin I (cTnI23/24) was reduced in HP. Importantly, NOS1 or PKG inhibition reduced cMyBP-C273 and cTnI23/24 and reversed myofilament Ca2+ sensitivity. These results reveal that NOS1 is up-regulated in LV myocytes from HP and exerts positive lusitropic effect by modulating myofilament Ca2+ sensitivity through phosphorylation of key regulators in sarcomere

    Acoustic Metameterial with Negative Modulus

    Full text link
    We present experimental and theoretical results on an acoustic metamaterial that exhibits negative effective modulus in a frequency range from 0 to 450 Hz. One-dimensional acoustic metamaterial with an array of side holes on a tube was fabricated. We observed that acoustic waves above 450 Hz propagated well in this structure, but no sound below 450 Hz passed through. The frequency characteristics of the metamaterial has the same form as that of the permittivity in metals due to the plasma oscillation. We also provide a theory to explain the experimental results

    Pathogenesis of Korean SapelovirusA in piglets and chicks.

    Get PDF
    Sapelovirus A (SV-A), formerly known as porcine sapelovirus as a member of a new genus Sapelovirus, is known to cause enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in pigs. We have recently identified α2,3-linked sialic acid on GD1a ganglioside as a functional SV-A receptor rich in the cells of pigs and chickens. However, the role of GD1a in viral pathogenesis remains elusive. Here, we demonstrated that a Korean SV-A strain could induce diarrhoea and intestinal pathology in piglets but not in chicks. Moreover, this Korean SV-A strain had mild extra-intestinal tropisms appearing as mild, non-suppurative myelitis, encephalitis and pneumonia in piglets, but not in chicks. By real-time reverse transcription (RT) PCR, higher viral RNA levels were detected in faecal samples than in sera or extra-intestinal organs from virus-inoculated piglets. Immunohistochemistry confirmed that high viral antigens were detected in the epithelial cells of intestines from virus-inoculated piglets but not from chicks. This Korean SV-A strain could bind the cultured cell lines originated from various species, but replication occurred only in cells of porcine origin. These data indicated that this Korean SV-A strain could replicate and induce pathology in piglets but not in chicks, suggesting that additional porcine-specific factors are required for virus entry and replication. In addition, this Korean SV-A strain is enteropathogenic, but could spread to the bloodstream from the gut and disseminate to extra-intestinal organs and tissues. These results will contribute to our understanding of SV-A pathogenesis so that efficient anti-sapelovirus drugs and vaccines could be developed in the future.This study was supported by a grant (2014R1A2A2A01004292) of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning, Bio-industry Technology Development Program (315021-04) through the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (iPET) funded by the Ministry of Agriculture, Food and Rural Affairs, and Korea Basic Science Institute grant (C33730), Republic of Korea. IG is a Wellcome Senior Fellow supported by the Wellcome Trust (097997/Z/11/Z). Chonnam National University provided funding to Mun-Il Kang (2012). The Mab against SV-A capsid protein was received as a generous gift from Dr. M. Dauber (Friedrich-Loeffler Institute, Germany).This is the accepted version of the article. The final version is available from the Microbiology Society via http://dx.doi.org/10.1099/jgv.0.00057
    corecore