2,302 research outputs found
Energy translation and Proper-Time Eigenstates
The usual quantum mechanics describes the mass eigenstates. To describe the
proper-time eigenstates, a duality theory of the usual quantum mechanics was
developed. The time interval is treated as an operator on an equal footing with
the space interval, and the quantization of the space-time intervals between
events is obtained. As a result, one can show that there exists a zero-point
time interval.Comment: 15 pages, No figur
Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games
Heterogeneous cellular networks (HCNs) with millimeter wave (mmWave)
communications included are emerging as a promising candidate for the fifth
generation mobile network. With highly directional antenna arrays, mmWave links
are able to provide several-Gbps transmission rate. However, mmWave links are
easily blocked without line of sight. On the other hand, D2D communications
have been proposed to support many content based applications, and need to
share resources with users in HCNs to improve spectral reuse and enhance system
capacity. Consequently, an efficient resource allocation scheme for D2D pairs
among both mmWave and the cellular carrier band is needed. In this paper, we
first formulate the problem of the resource allocation among mmWave and the
cellular band for multiple D2D pairs from the view point of game theory. Then,
with the characteristics of cellular and mmWave communications considered, we
propose a coalition formation game to maximize the system sum rate in
statistical average sense. We also theoretically prove that our proposed game
converges to a Nash-stable equilibrium and further reaches the near-optimal
solution with fast convergence rate. Through extensive simulations under
various system parameters, we demonstrate the superior performance of our
scheme in terms of the system sum rate compared with several other practical
schemes.Comment: 13 pages, 12 figure
Genetically engineered pre-microRNA-34a prodrug suppresses orthotopic osteosarcoma xenograft tumor growth via the induction of apoptosis and cell cycle arrest.
Osteosarcoma (OS) is the most common primary malignant bone tumor in children, and microRNA-34a (miR-34a) replacement therapy represents a new treatment strategy. This study was to define the effectiveness and safety profiles of a novel bioengineered miR-34a prodrug in orthotopic OS xenograft tumor mouse model. Highly purified pre-miR-34a prodrug significantly inhibited the proliferation of human 143B and MG-63 cells in a dose dependent manner and to much greater degrees than controls, which was attributed to induction of apoptosis and G2 cell cycle arrest. Inhibition of OS cell growth and invasion were associated with release of high levels of mature miR-34a from pre-miR-34a prodrug and consequently reduction of protein levels of many miR-34a target genes including SIRT1, BCL2, c-MET, and CDK6. Furthermore, intravenous administration of in vivo-jetPEI formulated miR-34a prodrug significantly reduced OS tumor growth in orthotopic xenograft mouse models. In addition, mouse blood chemistry profiles indicated that therapeutic doses of bioengineered miR-34a prodrug were well tolerated in these animals. The results demonstrated that bioengineered miR-34a prodrug was effective to control OS tumor growth which involved the induction of apoptosis and cell cycle arrest, supporting the development of bioengineered RNAs as a novel class of large molecule therapeutic agents
Global solutions of the 3D incompressible inhomogeneous viscoelastic system
In this paper, we prove the global existence of strong solutions for the 3D
incompressible inhomogeneous viscoelastic system. We do not assume the "initial
state" assumption and the "div-curl" structure inspired by the works [59,61].
It is a key to transform the original system into a suitable dissipative system
by introducing a new effective tensor, which is useful to establish a series of
energy estimates with appropriate time weights
Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks
Heterogeneous cellular networks (HCNs) with millimeter wave (mm-wave)
communications are considered as a promising technology for the fifth
generation mobile networks. Mm-wave has the potential to provide multiple
gigabit data rate due to the broad spectrum. Unfortunately, additional free
space path loss is also caused by the high carrier frequency. On the other
hand, mm-wave signals are sensitive to obstacles and more vulnerable to
blocking effects. To address this issue, highly directional narrow beams are
utilized in mm-wave networks. Additionally, device-to-device (D2D) users make
full use of their proximity and share uplink spectrum resources in HCNs to
increase the spectrum efficiency and network capacity. Towards the caused
complex interferences, the combination of D2D-enabled HCNs with small cells
densely deployed and mm-wave communications poses a big challenge to the
resource allocation problems. In this paper, we formulate the optimization
problem of D2D communication spectrum resource allocation among multiple
micro-wave bands and multiple mm-wave bands in HCNs. Then, considering the
totally different propagation conditions on the two bands, a heuristic
algorithm is proposed to maximize the system transmission rate and approximate
the solutions with sufficient accuracies. Compared with other practical
schemes, we carry out extensive simulations with different system parameters,
and demonstrate the superior performance of the proposed scheme. In addition,
the optimality and complexity are simulated to further verify effectiveness and
efficiency.Comment: 13 pages, 11 figures, IEEE Transactions on Vehicular Technolog
- …