94 research outputs found

    The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions

    Full text link
    A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.Comment: arXiv admin note: substantial text overlap with arXiv:1705.09078, arXiv:1705.0965

    The Main Results of the Borexino Experiment

    Full text link
    The main physical results on the registration of solar neutrinos and the search for rare processes obtained by the Borexino collaboration to date are presented.Comment: 8 pages, 8 figgures, To be published as Proceedings of the Third Annual Large Hadron Collider Physics Conference, St. Petersburg, Russia, 201

    Measurement of neutrino flux from the primary proton--proton fusion process in the Sun with Borexino detector

    Full text link
    Neutrino produced in a chain of nuclear reactions in the Sun starting from the fusion of two protons, for the first time has been detected in a real-time detector in spectrometric mode. The unique properties of the Borexino detector provided an oppurtunity to disentangle pp-neutrino spectrum from the background components. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 105^{5} years time scale, and sets a strong limit on the power production in the unknown energy sources in the Sun of no more than 4\% of the total energy production at 90\% C.L.Comment: 15 pages, 2 tables, 3 figure

    Light Sterile Neutrinos: A White Paper

    Get PDF
    This white paper addresses the hypothesis of light sterile neutrinos based on recent anomalies observed in neutrino experiments and the latest astrophysical data

    Development of dynamic models for neutron transport calculations

    Get PDF
    A quasi-static approach within the framework of neutron transport theory is used to develop a computational tool for the time-dependent analysis of nuclear systems. The determination of the shape function needed for the quasistatic scheme is obtained by the steady-state transport code DRAGON. The kinetic model solves the system of ordinary differential equations for the amplitude function on a fast scale. The kinetic parameters are calculated by a coupling module that retrieves the shape from the output of the transport code and performs the required adjoint-weighted quadratures. When the update of the shape has to be carried out, the coupling module generates an appropriate input file for the transport code. Both the standard Improved Quasi-Static scheme and an innovative Predictor-Corrector algorithm are implemented. The results show the feasibility of both procedures and their effectiveness in terms of computational times and accuracy
    corecore