62 research outputs found

    Distinguishing coherent and thermal photon noise in a circuit QED system

    Get PDF
    In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted photons originate from a variety of sources, such as thermal radiation, leftover measurement photons, and crosstalk. Using a capacitively-shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons, rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T1T_1-limited spin-echo decay time. The spin-locking noise spectroscopy technique can readily be applied to other qubit modalities for identifying general asymmetric non-classical noise spectra

    Thermal and Residual Excited-State Population in a 3D Transmon Qubit

    Get PDF
    Remarkable advancements in coherence and control fidelity have been achieved in recent years with cryogenic solid-state qubits. Nonetheless, thermalizing such devices to their milliKelvin environments has remained a long-standing fundamental and technical challenge. In this context, we present a systematic study of the first-excited-state population in a 3D transmon superconducting qubit mounted in a dilution refrigerator with a variable temperature. Using a modified version of the protocol developed by Geerlings et al., we observe the excited-state population to be consistent with a Maxwell-Boltzmann distribution, i.e., a qubit in thermal equilibrium with the refrigerator, over the temperature range 35–150 mK. Below 35 mK, the excited-state population saturates at approximately 0.1%. We verified this result using a flux qubit with ten times stronger coupling to its readout resonator. We conclude that these qubits have effective temperature T_{eff}=35  mK. Assuming T[subscript eff] is due solely to hot quasiparticles, the inferred qubit lifetime is 108  μs and in plausible agreement with the measured 80  μs.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002)United States. Army Research Office (Grant W911NF-14-1-0078)National Science Foundation (U.S.) (Grant PHY-1415514

    The flux qubit revisited to enhance coherence and reproducibility

    Get PDF
    The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 μs at its flux-insensitive point. Qubit relaxation times T₁ across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal-photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T₂≈85 μs, approximately the 2T₁ limit. In addition to realizing an improved flux qubit, our results uniquely identify photon shot noise as limiting T₂ in contemporary qubits based on transverse qubit–resonator interaction

    Universal non-adiabatic control of small-gap superconducting qubits

    Full text link
    Resonant transverse driving of a two-level system as viewed in the rotating frame couples two degenerate states at the Rabi frequency, an amazing equivalence that emerges in quantum mechanics. While spectacularly successful at controlling natural and artificial quantum systems, certain limitations may arise (e.g., the achievable gate speed) due to non-idealities like the counter-rotating term. Here, we explore a complementary approach to quantum control based on non-resonant, non-adiabatic driving of a longitudinal parameter in the presence of a fixed transverse coupling. We introduce a superconducting composite qubit (CQB), formed from two capacitively coupled transmon qubits, which features a small avoided crossing -- smaller than the environmental temperature -- between two energy levels. We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference to achieve fast, high-fidelity, single-qubit operations with Clifford fidelities exceeding 99.7%99.7\%. We also perform coupled qubit operations between two low-frequency CQBs. This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses

    Extremely Large Area (88 mm X 88 mm) Superconducting Integrated Circuit (ELASIC)

    Full text link
    Superconducting integrated circuit (SIC) is a promising "beyond-CMOS" device technology enables speed-of-light, nearly lossless communications to advance cryogenic (4 K or lower) computing. However, the lack of large-area superconducting IC has hindered the development of scalable practical systems. Herein, we describe a novel approach to interconnect 16 high-resolution deep UV (DUV EX4, 248 nm lithography) full reticle circuits to fabricate an extremely large (88mm X 88 mm) area superconducting integrated circuit (ELASIC). The fabrication process starts by interconnecting four high-resolution DUV EX4 (22 mm X 22 mm) full reticles using a single large-field (44 mm X 44 mm) I-line (365 nm lithography) reticle, followed by I-line reticle stitching at the boundaries of 44 mm X 44 mm fields to fabricate the complete ELASIC field (88 mm X 88 mm). The ELASIC demonstrated a 2X-12X reduction in circuit features and maintained high-stitched line superconducting critical currents. We examined quantum flux parametron (QFP) circuits to demonstrate the viability of common active components used for data buffering and transmission. Considering that no stitching requirement for high-resolution EX4 DUV reticles is employed, the present fabrication process has the potential to advance the scaling of superconducting quantum devices
    corecore