17 research outputs found
Reversion-induced LIM interaction with Src reveals a novel Src inactivation cycle
Aberrant Src activation plays prominent roles in cancer progression. However, how Src is activated in cancer cells is largely unknown. Genetic Src-activating mutations are rare and, therefore, are insufficient to account for Src activation commonly found in human cancers. In this study, we show that reversion-induced LIM (RIL), which is frequently lost in colon and other cancers as a result of epigenetic silencing, suppresses Src activation. Mechanistically, RIL suppresses Src activation through interacting with Src and PTPL1, allowing PTPL1-dependent dephosphorylation of Src at the activation loop. Importantly, the binding of RIL to Src is drastically reduced upon Src inactivation. Our results reveal a novel Src inactivation cycle in which RIL preferentially recognizes active Src and facilitates PTPL1-mediated inactivation of Src. Inactivation of Src, in turn, promotes dissociation of RIL from Src, allowing the initiation of a new Src inactivation cycle. Epigenetic silencing of RIL breaks this Src inactivation cycle and thereby contributes to aberrant Src activation in human cancers
Migfilin and Mig-2 Link Focal Adhesions to Filamin and the Actin Cytoskeleton and Function in Cell Shape Modulation
AbstractCell-extracellular matrix adhesion is an important determinant of cell morphology. We show here that migfilin, a LIM-containing protein, localizes to cell-matrix adhesions, associates with actin filaments, and is essential for cell shape modulation. Migfilin interacts with the cell-matrix adhesion protein Mig-2 (mitogen inducible gene-2), a mammalian homolog of UNC-112, and the actin binding protein filamin through its C- and N-terminal domains, respectively. Loss of Mig-2 or migfilin impairs cell shape modulation. Mig-2 recruits migfilin to cell-matrix adhesions, while the interaction with filamin mediates the association of migfilin with actin filaments. Migfilin therefore functions as an important scaffold at cell-matrix adhesions. Together, Mig-2, migfilin and filamin define a connection between cell matrix adhesions and the actin cytoskeleton and participate in the orchestration of actin assembly and cell shape modulation