193 research outputs found

    Porcellio scaber algorithm (PSA) for solving constrained optimization problems

    Full text link
    In this paper, we extend a bio-inspired algorithm called the porcellio scaber algorithm (PSA) to solve constrained optimization problems, including a constrained mixed discrete-continuous nonlinear optimization problem. Our extensive experiment results based on benchmark optimization problems show that the PSA has a better performance than many existing methods or algorithms. The results indicate that the PSA is a promising algorithm for constrained optimization.Comment: 6 pages, 1 figur

    Preparation and Characterization of Bio-oil from Biomass

    Get PDF

    <em>In silico</em> analysis of bacterial arsenic islands reveals remarkable synteny and functional relatedness between arsenate and phosphate

    Get PDF
    In order to construct a more universal model for understanding the genetic requirements for bacterial AsIII oxidation, an in silico examination of the available sequences in the GenBank was assessed and revealed 21 conserved 5–71 kb arsenic islands within phylogenetically diverse bacterial genomes. The arsenic islands included the AsIII oxidase structural genes aioBA, ars operons (e.g., arsRCB) which code for arsenic resistance, and pho, pst, and phn genes known to be part of the classical phosphate stress response and that encode functions associated with regulating and acquiring organic and inorganic phosphorus. The regulatory genes aioXSR were also an island component, but only in Proteobacteria and orientated differently depending on whether they were in α-Proteobacteria or β-/γ-Proteobacteria. Curiously though, while these regulatory genes have been shown to be essential to AsIII oxidation in the Proteobacteria, they are absent in most other organisms examined, inferring different regulatory mechanism(s) yet to be discovered. Phylogenetic analysis of the aio, ars, pst, and phn genes revealed evidence of both vertical inheritance and horizontal gene transfer (HGT). It is therefore likely the arsenic islands did not evolve as a whole unit but formed independently by acquisition of functionally related genes and operons in respective strains. Considering gene synteny and structural analogies between arsenate and phosphate, we presumed that these genes function together in helping these microbes to be able to use even low concentrations of phosphorus needed for vital functions under high concentrations of arsenic, and defined these sequences as the arsenic islands

    Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET

    Get PDF
    AbstractChronic exposure to elevated levels of glucocorticoids can exert a neurotoxic effect in patients, possibly manifesting as molecular imaging alterations in patients. The aim of this study was to investigate the potential association between brain metabolism and elevated hormone level using 18F-fluorodeoxyglucose positron emission tomography. We retrospectively enrolled 92 consecutive patients with confirmed diagnosis of Cushing's disease. A voxel-based analysis was performed to investigate the association between cerebral 18F-fluorodeoxyglucose uptake and serum cortisol level. Relatively impaired metabolism of specific brain regions correlated with serum cortisol level was found. Specifically, notable correlations were found in the hippocampus, amygdala, and cerebellum, regions considered to be involved in the regulation and central action of glucocorticoids. Moreover, some hormone-associated regions were found in the frontal and occipital cortex, possibly mediating the cognitive changes seen in Cushing's disease. Our findings link patterns of perturbed brain metabolism relates to individual hormone level, thus presenting a substrate for cognitive disturbances seen in Cushing's disease patients, as well as in other conditions with abnormal cortisol levels
    corecore