145 research outputs found

    Silicon Carbide Power MESFET

    Get PDF

    SLSSNN: High energy efficiency spike-train level spiking neural networks with spatio-temporal conversion

    Full text link
    Brain-inspired spiking neuron networks (SNNs) have attracted widespread research interest due to their low power features, high biological plausibility, and strong spatiotemporal information processing capability. Although adopting a surrogate gradient (SG) makes the non-differentiability SNN trainable, achieving comparable accuracy for ANNs and keeping low-power features simultaneously is still tricky. In this paper, we proposed an energy-efficient spike-train level spiking neural network (SLSSNN) with low computational cost and high accuracy. In the SLSSNN, spatio-temporal conversion blocks (STCBs) are applied to replace the convolutional and ReLU layers to keep the low power features of SNNs and improve accuracy. However, SLSSNN cannot adopt backpropagation algorithms directly due to the non-differentiability nature of spike trains. We proposed a suitable learning rule for SLSSNNs by deducing the equivalent gradient of STCB. We evaluate the proposed SLSSNN on static and neuromorphic datasets, including Fashion-Mnist, Cifar10, Cifar100, TinyImageNet, and DVS-Cifar10. The experiment results show that our proposed SLSSNN outperforms the state-of-the-art accuracy on nearly all datasets, using fewer time steps and being highly energy-efficient

    Novel Developments and Challenges for the SiC Power Devices

    Get PDF
    Silicon Carbide (SiC) is believed to be a revolutionary semiconductor material for power devices of the future; many SiC power devices have emerged as superior alternative power switch technology, especially in harsh environments with high temperature or high electric field. In this chapter, the challenges and recent developments of SiC power devices are discussed. The first part is focused on SiC power diodes including SiC Schottky barrier diode (SBD), SiC PiN diodes (PiN,) SiC junction/Schottky diodes (JBS), then SiC UMOSFETs, DMOSFETs and several MESFETs are introduced, and the third part is about SiC bipolar devices such as BJT and IGBT. Finally, the challenges during the development of SiC power devices, especially about its material growth and packaging are discussed

    NFC Secure Payment and Verification Scheme with CS E-Ticket

    Get PDF
    As one of the most important techniques in IoT, NFC (Near Field Communication) is more interesting than ever. NFC is a short-range, high-frequency communication technology well suited for electronic tickets, micropayment, and access control function, which is widely used in the financial industry, traffic transport, road ban control, and other fields. However, NFC is becoming increasingly popular in the relevant field, but its secure problems, such as man-in-the-middle-attack and brute force attack, have hindered its further development. To address the security problems and specific application scenarios, we propose a NFC mobile electronic ticket secure payment and verification scheme in the paper. The proposed scheme uses a CS E-Ticket and offline session key generation and distribution technology to prevent major attacks and increase the security of NFC. As a result, the proposed scheme can not only be a good alternative to mobile e-ticket system but also be used in many NFC fields. Furthermore, compared with other existing schemes, the proposed scheme provides a higher security

    Analysis of the novel Snapback-Free LIGBT with fast-switching and improved latch-up immunity by TCAD Simulation

    No full text

    ULMAP: Ultralightweight NFC Mutual Authentication Protocol with Pseudonyms in the Tag for IoT in 5G

    No full text
    As one of the core techniques in 5G, the Internet of Things (IoT) is increasingly attracting people’s attention. Meanwhile, as an important part of IoT, the Near Field Communication (NFC) is widely used on mobile devices and makes it possible to take advantage of NFC system to complete mobile payment and merchandise information reading. But with the development of NFC, its problems are increasingly exposed, especially the security and privacy of authentication. Many NFC authentication protocols have been proposed for that, some of them only improve the function and performance without considering the security and privacy, and most of the protocols are heavyweight. In order to overcome these problems, this paper proposes an ultralightweight mutual authentication protocol, named ULMAP. ULMAP only uses Bit and XOR operations to complete the mutual authentication and prevent the denial of service (DoS) attack. In addition, it uses subkey and subindex number into its key update process to achieve the forward security. The most important thing is that the computation and storage overhead of ULMAP are few. Compared with some traditional schemes, our scheme is lightweight, economical, practical, and easy to protect against synchronization attack
    • …
    corecore