111 research outputs found
A preliminary investigation into English as a foreign language (EFL) learners’ speaking self-efficacy, satisfaction and speaking performance in the blended teaching environment in a Chinese university: a quantitative study
With the acceleration of educational informatization, the blended teaching mode has developed rapidly. In this context, grounded in Bandura's self-efficacy theory, this study investigated the relationship among students’ satisfaction with blended teaching mode of EFL class, speaking self-efficacy and speaking achievement by means of factor analysis, correlation analysis and regression analysis. The results showed that, first there was a significant positive correlation between the three variables of satisfaction with blended teaching mode, speaking self-efficacy and final speaking performance. Speaking self-efficacy was highly correlated with final speaking achievement while students’ satisfaction with blended teaching mode of EFL class was low correlated with speaking self-efficacy and final speaking achievement. Second, speaking self-efficacy and students’ satisfaction with blended teaching mode of EFL class can explain 56.4% of the variation of final speaking performance, with the former being stronger. Based on this, this study provided suggestions for future studies so as to improve students' English-speaking proficiency
Lessons from Formally Verified Deployed Software Systems (Extended version)
The technology of formal software verification has made spectacular advances,
but how much does it actually benefit the development of practical software?
Considerable disagreement remains about the practicality of building systems
with mechanically-checked proofs of correctness. Is this prospect confined to a
few expensive, life-critical projects, or can the idea be applied to a wide
segment of the software industry?
To help answer this question, the present survey examines a range of
projects, in various application areas, that have produced formally verified
systems and deployed them for actual use. It considers the technologies used,
the form of verification applied, the results obtained, and the lessons that
can be drawn for the software industry at large and its ability to benefit from
formal verification techniques and tools.
Note: a short version of this paper is also available, covering in detail
only a subset of the considered systems. The present version is intended for
full reference.Comment: arXiv admin note: text overlap with arXiv:1211.6186 by other author
Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa.
Bacteria develop a broad range of phage resistance mechanisms, such as prevention of phage adsorption and CRISPR/Cas system, to survive phage predation. In this study, Pseudomonas aeruginosa PA1 strain was infected with lytic phage PaP1, and phage-resistant mutants were selected. A high percentage (~30%) of these mutants displayed red pigmentation phenotype (Red mutant). Through comparative genomic analysis, one Red mutant PA1r was found to have a 219.6 kb genomic fragment deletion, which contains two key genes hmgA and galU related to the observed phenotypes. Deletion of hmgA resulted in the accumulation of a red compound homogentisic acid; while A galU mutant is devoid of O-antigen, which is required for phage adsorption. Intriguingly, while the loss of galU conferred phage resistance, it significantly attenuated PA1r in a mouse infection experiment. Our study revealed a novel phage resistance mechanism via chromosomal DNA deletion in P. aeruginosa
The IKKβ Subunit of IκB Kinase (IKK) is Essential for Nuclear Factor κB Activation and Prevention of Apoptosis
The IκB kinase (IKK) complex is composed of three subunits, IKKα, IKKβ, and IKKγ (NEMO). While IKKα and IKKβ are highly similar catalytic subunits, both capable of IκB phosphorylation in vitro, IKKγ is a regulatory subunit. Previous biochemical and genetic analyses have indicated that despite their similar structures and in vitro kinase activities, IKKα and IKKβ have distinct functions. Surprisingly, disruption of the Ikkα locus did not abolish activation of IKK by proinflammatory stimuli and resulted in only a small decrease in nuclear factor (NF)-κB activation. Now we describe the pathophysiological consequence of disruption of the Ikkβ locus. IKKβ-deficient mice die at mid-gestation from uncontrolled liver apoptosis, a phenotype that is remarkably similar to that of mice deficient in both the RelA (p65) and NF-κB1 (p50/p105) subunits of NF-κB. Accordingly, IKKβ-deficient cells are defective in activation of IKK and NF-κB in response to either tumor necrosis factor α or interleukin 1. Thus IKKβ, but not IKKα, plays the major role in IKK activation and induction of NF-κB activity. In the absence of IKKβ, IKKα is unresponsive to IKK activators
IKKα negatively regulates ASC-dependent inflammasome activation.
The inflammasomes are multiprotein complexes that activate caspase-1 in response to infections and stress, resulting in the secretion of pro-inflammatory cytokines. Here we report that IκB kinase α (IKKα) is a critical negative regulator of apoptosis-associated specklike protein containing a C-terminal caspase-activation-andrecruitment (CARD) domain (ASC)-dependent inflammasomes. IKKα controls the inflammasome at the level of the adaptor ASC, which interacts with IKKα in the nucleus of resting macrophages in an IKKα kinase-dependent manner. Loss of IKKα kinase activity results in inflammasome hyperactivation. Mechanistically, the downstream nuclear effector IKK-related kinase (IKKi) facilitates translocation of ASC from the nucleus to the perinuclear area during inflammasome activation. ASC remains under the control of IKKα in the perinuclear area following translocation of the ASC/IKKα complex. Signal 2 of NLRP3 activation leads to inhibition of IKKα kinase activity through the recruitment of PP2A, allowing ASC to participate in NLRP3 inflammasome assembly. Taken together, these findings reveal a IKKi-IKKα-ASC axis that serves as a common regulatory mechanism for ASC-dependent inflammasomes
Global characteristics and trends in research on Candida auris
IntroductionCandida auris, a fungal pathogen first reported in 2009, has shown strong resistance to azole antifungal drugs and has caused severe nosocomial outbreaks. It can also form biofilms, which can colonize patients’ skin and transmit to others. Despite numerous reports of C. auris isolation in various countries, many studies have reported contradictory results.MethodA bibliometric analysis was conducted using VOSviewer to summarize research trends and provide guidance for future research on controlling C. auris infection. The analysis revealed that the United States and the US CDC were the most influential countries and research institutions, respectively. For the researchers, Jacques F. Meis published the highest amount of related articles, and Anastasia P. Litvintseva’s articles with the highest average citation rate. The most cited publications focused on clade classification, accurate identification technologies, nosocomial outbreaks, drug resistance, and biofilm formation. Keyword co-occurrence analysis revealed that the top five highest frequencies were for ‘drug resistance,’ ‘antifungal susceptibility test,’ ‘infection,’ ‘Candida auris,’ and ‘identification.’ The high-frequency keywords clustered into four groups: rapid and precise identification, drug resistance research, pathogenicity, and nosocomial transmission epidemiology studies. These clusters represent different study fields and current research hotspots of C. auris.ConclusionThe bibliometric analysis identified the most influential country, research institution, and researcher, indicating current research trends and hotspots for controlling C. auris
Unlocking the mystery of the hard-to-sequence phage genome: PaP1 methylome and bacterial immunity
BACKGROUND: Whole-genome sequencing is an important method to understand the genetic information, gene function, biological characteristics and survival mechanisms of organisms. Sequencing large genomes is very simple at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. Shotgun sequencing method failed to complete the sequence of this genome. RESULTS: After persevering for 10 years and going over three generations of sequencing techniques, we successfully completed the sequence of the PaP1 genome with a length of 91,715 bp. Single-molecule real-time sequencing results revealed that this genome contains 51 N-6-methyladenines and 152 N-4-methylcytosines. Three significant modified sequence motifs were predicted, but not all of the sites found in the genome were methylated in these motifs. Further investigations revealed a novel immune mechanism of bacteria, in which host bacteria can recognise and repel modified bases containing inserts in a large scale. This mechanism could be accounted for the failure of the shotgun method in PaP1 genome sequencing. This problem was resolved using the nfi(-) mutant of Escherichia coli DH5α as a host bacterium to construct a shotgun library. CONCLUSIONS: This work provided insights into the hard-to-sequence phage PaP1 genome and discovered a new mechanism of bacterial immunity. The methylome of phage PaP1 is responsible for the failure of shotgun sequencing and for bacterial immunity mediated by enzyme Endo V activity; this methylome also provides a valuable resource for future studies on PaP1 genome replication and modification, as well as on gene regulation and host interaction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-803) contains supplementary material, which is available to authorized users
In Vivo Anti-Tumor Activity of Polypeptide HM-3 Modified by Different Polyethylene Glycols (PEG)
HM-3, designed by our laboratory, is a polypeptide composed of 18 amino acids. Pharmacodynamic studies in vivo and in vitro indicated that HM-3 could inhibit endothelial cell migration and angiogenesis, thereby inhibiting tumor growth. However, the half-life of HM-3 is short. In this study, we modified HM-3 with different polyethylene glycols (PEG) in order to reduce the plasma clearance rate, extend the half-life in the body, maintain a high concentration of HM-3 in the blood and increase the therapeutic efficiency. HM-3 was modified with four different types of PEG with different molecular weights (ALD-mPEG5k, ALD-mPEG10k, SC-mPEG10k and SC-mPEG20k), resulting in four modified products (ALD-mPEG5k-HM-3, ALD-mPEG10k-HM-3, SC-mPEG10k-HM-3 and SC-mPEG20k-HM-3, respectively). Anti-tumor activity of these four modified HM-3 was determined in BALB/c mice with Taxol as a positive control and normal saline as a negative control. Tumor weight inhibition rates of mice treated with Taxol, HM-3, ALD-mPEG5k-HM-3, ALD-mPEG10k-HM-3, SC-mPEG10k-HM-3 and SC-mPEG20k-HM-3 were 44.50%, 43.92%, 37.95%, 31.64%, 20.27% and 50.23%, respectively. Tumor inhibition rates in the Taxol, HM-3 and SC-mPEG20k-HM-3 groups were significantly higher than that in the negative control group. The efficiency of tumor inhibition in the SC-mPEG20k-HM-3 group (drug treatment frequency: once per two days) was better than that in the HM-3 group (drug treatment frequency: twice per day). In addition, tumor inhibition rate in the SC-mPEG20k-HM-3 group was higher than that in the taxol group. We conclude that SC-mPEG20k-HM-3 had a low plasma clearance rate and long half-life, resulting in high anti-tumor therapeutic efficacy in vivo. Therefore, SC-mPEG20k-HM-3 could be potentially developed as new anti-tumor drugs
Comparative genomics and DNA methylation analysis of Pseudomonas aeruginosa clinical isolate PA3 by single-molecule real-time sequencing reveals new targets for antimicrobials
IntroductionPseudomonas aeruginosa (P.aeruginosa) is an important opportunistic pathogen with broad environmental adaptability and complex drug resistance. Single-molecule real-time (SMRT) sequencing technique has longer read-length sequences, more accuracy, and the ability to identify epigenetic DNA alterations.MethodsThis study applied SMRT technology to sequence a clinical strain P. aeruginosa PA3 to obtain its genome sequence and methylation modification information. Genomic, comparative, pan-genomic, and epigenetic analyses of PA3 were conducted.ResultsGeneral genome annotations of PA3 were discovered, as well as information about virulence factors, regulatory proteins (RPs), secreted proteins, type II toxin-antitoxin (TA) pairs, and genomic islands. A genome-wide comparison revealed that PA3 was comparable to other P. aeruginosa strains in terms of identity, but varied in areas of horizontal gene transfer (HGT). Phylogenetic analysis showed that PA3 was closely related to P. aeruginosa 60503 and P. aeruginosa 8380. P. aeruginosa's pan-genome consists of a core genome of roughly 4,300 genes and an accessory genome of at least 5,500 genes. The results of the epigenetic analysis identified one main methylation sites, N6-methyladenosine (m6A) and 1 motif (CATNNNNNNNTCCT/AGGANNNNNNNATG). 16 meaningful methylated sites were picked. Among these, purH, phaZ, and lexA are of great significance playing an important role in the drug resistance and biological environment adaptability of PA3, and the targeting of these genes may benefit further antibacterial studies.DisucssionThis study provided a detailed visualization and DNA methylation information of the PA3 genome and set a foundation for subsequent research into the molecular mechanism of DNA methyltransferase-controlled P. aeruginosa pathogenicity
IKKα controls ATG16L1 degradation to prevent ER stress during inflammation
Inhibition of the IκB kinase complex (IKK) has been implicated in the therapy of several chronic inflammatory diseases including inflammatory bowel diseases. In this study, using mice with an inactivatable IKKα kinase (IkkαAA/AA), we show that loss of IKKα function markedly impairs epithelial regeneration in a model of acute colitis. Mechanistically, this is caused by compromised secretion of cytoprotective IL-18 from IKKα-mutant intestinal epithelial cells because of elevated caspase 12 activation during an enhanced unfolded protein response (UPR). Induction of the UPR is linked to decreased ATG16L1 stabilization in IkkαAA/AA mice. We demonstrate that both TNF-R and nucleotide-binding oligomerization domain stimulation promote ATG16L1 stabilization via IKKα-dependent phosphorylation of ATG16L1 at Ser278. Thus, we propose IKKα as a central mediator sensing both cytokine and microbial stimulation to suppress endoplasmic reticulum stress, thereby assuring antiinflammatory function during acute intestinal inflammation
- …