69 research outputs found

    Neonatal lactic acidosis and/or thrombocytopenia caused by multi-oil fat emulsion injection: two cases report and literature review

    Get PDF
    Objective To analyze the clinical characteristics of neonatal lactic acidosis and thrombocytopenia induced by multi-oil fat emulsions (SMOF), aiming to deepen clinicians’ understanding of adverse reactions to this drug. Methods Clinical data of two male neonates who suffered from lactic acidosis and/or thrombocytopenia after using intravenous SMOF for more than two weeks were analyzed. Literature review was conduced from PubMed, SinoMed, CNKI, Wanfang Data and CMAPH using the keywords of “neonate”, “multi-oil fat emulsions”, “lactic acidosis”, and “thrombocytopenia” in both Chinese and English. Clinical data of retrieved cases were collected and analyzed. Results Blood lactate, acidosis, and platelets returned to normal in two cases after terminating SMOF. Eight cases of fat overload syndrome caused by fat emulsion injection were retrieved by literature review, and one of them was treated with SMOF. All eight cases were improved after terminating intravenous fat emulsion, and four of them also received blood exchange therapy. Conclusions SMOF can cause neonatal lactic acidosis and/or thrombocytopenia. Clinicians should deepen the understanding of adverse reactions to this drug and lower the misdiagnosis and mistherapy rates

    Influence characteristics of regional micrometeorology on macroscopic scale of external dump

    Get PDF
    To study the relationship of external dump of opencast coal mine impacting on surrounding micrometeorological factors, and then provide the foundation acknowledge for the ecological restoration in mining area, the airflow movement and water distribution around the mine area were regarded as the influencing factors to furtherly explore the ecological effects of the scale and form of the external dump. Taking Hongshaquan open-pit coal mine as an example, using Fluent fluid simulation software, adopting large eddy simulation and component transfer model, the external dump models with different heights and angles were established for simulation. The monthly temperature and dew point data of the area in 2020 were obtained through the regional meteorological station where Hongshaquan open-pit coal mine located, thereby reaching the monthly condensation height of the area. By analyzing the cloud diagrams of air velocity and moisture mass fraction under different conditions, the influence law of different sizes of external dump on the surrounding air flow movement and water distribution was obtained, and compared with the condensation height in the area. The numerical simulation results showed that: with the increasing dump height, the air climbing speed increased slowly, while the maximum climbing height increased, as well as the moisture mass fraction on the windward slope and the dump top ascended. More and more obvious Karman vortex street phenomenon was formed along the leeward slope. The number of vortices increased and the influence range became larger. Both of the airflow velocity and moisture mass fraction in the vortex area increased and reached their maximum values. The increase in the angle of the external dump presented a significant impact on the maximum climb height of the airflow, but showed little impact on the surrounding micrometeorological factors. Under the condition of 360 m limit height, when the external dump Angle reached the critical value of 26°, the maximum airflow climbing height would reach the summer condensation height in this area. Alternatively, under the condition of 22° limit Angle of the outer dump, when the height of the outer dump reached the critical value of 380 m, the maximum climbing height of airflow would reach the summer condensation height of the region, thereby promoting the precipitation around the mining are

    Characterization of Inter- and Intramolecular Interactions of Amyloid Fibrils by AFM-Based Single-Molecule Force Spectroscopy

    Get PDF
    Amyloids are fibrous protein aggregates defined by shared specific structural features. Abnormal accumulation of amyloid in organs leads to amyloidosis, which results in various neurodegenerative diseases. Atomic force microscopy (AFM) has proven to be an excellent tool investigating amyloids; it has been extensively utilized to characterize its morphology, assembly process, and mechanical properties. This review summarizes studies which applied AFM to detect the inter- and intramolecular interactions of amyloid fibrils and classified the influencing factors of amyloid’s nanomechanics in detail. The characteristics of amyloid fibrils driven by inter- and intramolecular interactions, including various morphologies of amyloid fibrils, self-assembly process, and the aggregating pathway, are described. Successful examples where AFM provided abundant information about inter- and intramolecular interactions of amyloid fibrils in different environments are presented. Direct force measurement of intra- or intermolecular interactions utilizing an AFM-based tool, single-molecular force spectroscopy (SMFS), is introduced. Some mechanical information such as elasticity, adhesiveness, and strength was obtained by stretching amyloid fibrils. This review helps researchers in understanding the mechanism of amyloidogenesis and exploring the properties of amyloid using AFM techniques

    Gp85 protein encapsulated by alginate-chitosan composite microspheres induced strong immunogenicity against avian leukosis virus in chicken

    Get PDF
    IntroductionAvian leukosis, a viral disease affecting birds such as chickens, presents significant challenges in poultry farming due to tumor formation, decreased egg production, and increased mortality. Despite the absence of a commercial vaccine, avian leukosis virus (ALV) infections have been extensively documented, resulting in substantial economic losses in the poultry industry. This study aimed to develop alginate-chitosan composite microspheres loaded with ALV-J Gp85 protein (referred to as aCHP-gp85) as a potential vaccine candidate.MethodsSodium alginate and chitosan were utilized as encapsulating materials, with the ALV-J Gp85 protein serving as the active ingredient. The study involved 45 specific pathogen-free (SPF) chickens to evaluate the immunological effectiveness of aCHP-gp85 compared to a traditional Freund adjuvant-gp85 vaccine (Freund-gp85). Two rounds of vaccination were administered, and antibody levels, mRNA expression of immune markers, splenic lymphocyte proliferation, and immune response were assessed. An animal challenge experiment was conducted to evaluate the vaccine’s efficacy in reducing ALV-J virus presence and improving clinical conditions.ResultsThe results demonstrated that aCHP-gp85 induced a significant and sustained increase in antibody levels compared to Freund-gp85, with the elevated response lasting for 84 days. Furthermore, aCHP-gp85 significantly upregulated mRNA expression levels of key immune markers, notably TNF-α and IFN-γ. The application of ALV-J Gp85 protein within the aCHP-gp85 group led to a significant increase in splenic lymphocyte proliferation and immune response. In the animal challenge experiment, aCHP-gp85 effectively reduced ALV-J virus presence and improved clinical conditions compared to other groups, with no significant pathological changes observed.DiscussionThe findings suggest that aCHP-gp85 elicits a strong and prolonged immune response compared to Freund-gp85, indicating its potential as an innovative ALV-J vaccine candidate. These results provide valuable insights for addressing avian leukosis in the poultry industry, both academically and practically

    Water masses influence the variation of microbial communities in the Yangtze River Estuary and its adjacent waters

    Get PDF
    The Yangtze River estuary (YRE) are strongly influenced by the Kuroshio and terrigenous input from rivers, leading to the formation of distinct water masses, however, there remains a limited understanding of the full extent of this influence. Here the variation of water masses and bacterial communities of 58 seawater samples from the YRE and its adjacent waters were investigated. Our findings suggested that there were 5 water masses in the studied area: Black stream (BS), coastal water in the East China Sea (CW), nearshore mixed water (NM), mixed water in the middle and deep layers of the East China Sea (MM), and deep water blocks in the middle of the East China Sea (DM). The CW mass harbors the highest alpha diversity across all layers, whereas the NM mass exhibits higher diversity in the surface layer but lower in the middle layers. Proteobacteria was the most abundant taxa in all water masses, apart from that, in the surface layer masses, Cyanobacterium, Bacteroidota, and Actinobacteriota were the highest proportion in CW, while Bacteroidota and Actinobacteriota were the highest proportion in NM and BS; in the middle layer, Bacteroidota and Actinobacteriota were dominant phylum in CW and BS masses, but Cyanobacterium was main phylum in NM mass; in the bottom layer, Bacteroidota and Actinobacteriota were the dominant phylum in CW, while Marininimicrobia was the dominated phylum in DM and MM masses. Network analysis suggests water masses have obvious influence on community topological characteristics, moreover, community assembly across masses also differ greatly. Taken together, these results emphasized the significant impact of water masses on the bacterial composition, topological characteristics and assembly process, which may provide a theoretical foundation for predicting alterations in microbial communities within estuarine ecosystems under the influence of water masses

    Pre-Absorbed Immunoproteomics: A Novel Method for the Detection of Streptococcus suis Surface Proteins

    Get PDF
    Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that can cause infections in pigs and humans. Bacterial surface proteins are often investigated as potential vaccine candidates and biomarkers of virulence. In this study, a novel method for identifying bacterial surface proteins is presented, which combines immunoproteomic and immunoserologic techniques. Critical to the success of this new method is an improved procedure for generating two-dimensional electrophoresis gel profiles of S. suis proteins. The S. suis surface proteins identified in this study include muramidase-released protein precursor (MRP) and an ABC transporter protein, while MRP is thought to be one of the main virulence factors in SS2 located on the bacterial surface. Herein, we demonstrate that the ABC transporter protein can bind to HEp-2 cells, which strongly suggests that this protein is located on the bacterial cell surface and may be involved in pathogenesis. An immunofluorescence assay confirmed that the ABC transporter is localized to the bacterial outer surface. This new method may prove to be a useful tool for identifying surface proteins, and aid in the development of new vaccine subunits and disease diagnostics

    Nonlinear Dynamic Responses of a Honeycomb Sandwich Plate Subject to Transverse Excitations

    No full text
    Nonlinear dynamic behaviors of a simply supported honeycomb sandwich plate subjected to the transverse excitations are investigated in this paper. Based on the classical thin plate theory and Von Karman large deformation theory, the governing equation of motion for the honeycomb sandwich plate is established by using the Hamilton principle. The nonlinear governing partial differential equation is discretized to the ordinary differential equations by differential quadrature method and then solved by Runge-Kutta-Fehlberg method. Based on the numerical simulations, combined with nonlinear dynamic theory, the influences of the frequency and amplitude of the transverse excitation are investigated respectively by using the bifurcation diagrams, Poincare maps and phase portraits. The results exhibit the existence of the period-1, period-2 and chaotic responses with the variation of the excitations, which demonstrate that those motions appear alternately
    corecore