5 research outputs found

    Genomic insights into the evolution of flavonoid biosynthesis and O-methyltransferase and glucosyltransferase in Chrysanthemum indicum

    No full text
    Summary: Flavonoids are a class of secondary metabolites widely distributed in plants. Regiospecific modification by methylation and glycosylation determines flavonoid diversity. A rare flavone glycoside, diosmin (luteolin-4′-methoxyl-7-O-glucosyl-rhamnoside), occurs in Chrysanthemum indicum. How Chrysanthemum plants evolve new biosynthetic capacities remains elusive. Here, we assemble a 3.11-Gb high-quality C. indicum genome with a contig N50 value of 4.39 Mb and annotate 50,606 protein-coding genes. One (CiCOMT10) of the tandemly repeated O-methyltransferase genes undergoes neofunctionalization, preferentially transferring the methyl group to the 4′-hydroxyl group of luteolin with ortho-substituents to form diosmetin. In addition, CiUGT11 (UGT88B3) specifically glucosylates 7-OH group of diosmetin. Next, we construct a one-pot cascade biocatalyst system by combining CiCOMT10, CiUGT11, and our previously identified rhamnosyltransferase, effectively producing diosmin with over 80% conversion from luteolin. This study clarifies the role of transferases in flavonoid diversity and provides important gene elements essential for producing rare flavone

    Effect of dissolved oxygen levels on growth performance, energy budget and antioxidant responses of yellow catfish, Pelteobagrus fulvidraco (Richardson)

    No full text
    This study was conducted to determine the effect of dissolved oxygen (DO) levels on growth performance, energy budget and antioxidant responses of yellow catfish Pelteobagrus fulvidraco. Yellow catfish was exposed to four levels of DO, consisting of hypoxia (2.28mgL(-1)), moderate hypoxia (4.04mgL(-1)), saturation (6.51mgL(-1)) and super-saturation groups (9.11mgL(-1)), respectively, for 8weeks. Specific growth rate and feed efficiency in dry matter were lowest in hypoxia and highest in the saturation and super-saturation groups. Apparent digestibility coefficients of dry matter and energy increased with increasing DO levels. Gross energy and growth energy were lowest for hypoxia, followed by moderate hypoxia and the highest for other two groups. Faecal energy was highest in hypoxia and lowest in saturation and super-saturation group. DO levels also significantly influenced activities of antioxidant enzymes and malondialdehyde level in liver and serum. Based on the observation described previously, saturated DO level helps to improve growth performance, feed utilization and antioxidant responses in yellow catfish. Super-saturation did not increase fish performance. To our knowledge, this is the first study involved in the effect of DO levels on energy budget of fish and provides new insight into aeration regime for yellow catfish culture

    Rapid fabrication of precise high-throughput filters from membrane protein nanosheets

    No full text
    Biological membranes are ideal for separations as they provide high permeability while maintaining high solute selectivity due to the presence of specialized membrane protein (MP) channels. However, successful integration of MPs into manufactured membranes has remained a significant challenge. Here, we demonstrate a two-hour organic solvent method to develop 2D crystals and nanosheets of highly packed pore-forming MPs in block copolymers (BCPs). We then integrate these hybrid materials into scalable MP-BCP biomimetic membranes. These MP-BCP nanosheet membranes maintain the molecular selectivity of the three types of β-barrel MP channels used, with pore sizes of 0.8 nm, 1.3 nm, and 1.5 nm. These biomimetic membranes demonstrate water permeability that is 20–1,000 times greater than that of commercial membranes and 1.5–45 times greater than that of the latest research membranes with comparable molecular exclusion ratings. This approach could provide high performance alternatives in the challenging sub-nanometre to few-nanometre size range. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.11Nsciescopu

    Metabolism of Oxalate in Humans: A Potential Role Kynurenine Aminotransferase/Glutamine Transaminase/Cysteine Conjugate Betalyase Plays in Hyperoxaluria

    No full text
    corecore