2,203 research outputs found
Canonical Wnt Signaling and Its Role in Cardiac Arrythmogenesis
From the Washington University Office of Undergraduate Research Digest (WUURD), Vol. 13, 05-01-2018. Published by the Office of Undergraduate Research. Joy Zalis Kiefer, Director of Undergraduate Research and Associate Dean in the College of Arts & Sciences; Lindsey Paunovich, Editor; Helen Human, Programs Manager and Assistant Dean in the College of Arts and Sciences Mentor(s): Stacey Rentschle
Optimal Algorithms for Non-Smooth Distributed Optimization in Networks
In this work, we consider the distributed optimization of non-smooth convex
functions using a network of computing units. We investigate this problem under
two regularity assumptions: (1) the Lipschitz continuity of the global
objective function, and (2) the Lipschitz continuity of local individual
functions. Under the local regularity assumption, we provide the first optimal
first-order decentralized algorithm called multi-step primal-dual (MSPD) and
its corresponding optimal convergence rate. A notable aspect of this result is
that, for non-smooth functions, while the dominant term of the error is in
, the structure of the communication network only impacts a
second-order term in , where is time. In other words, the error due
to limits in communication resources decreases at a fast rate even in the case
of non-strongly-convex objective functions. Under the global regularity
assumption, we provide a simple yet efficient algorithm called distributed
randomized smoothing (DRS) based on a local smoothing of the objective
function, and show that DRS is within a multiplicative factor of the
optimal convergence rate, where is the underlying dimension.Comment: 17 page
19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.
We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%
- …