10,343 research outputs found
Multi-Nucleon Exchange in Quasi-Fission Reactions
Nucleon exchange mechanism is investigated in the central collisions of
Ca + U and Ca + U systems near the
quasi-fission regime in the framework of the Stochastic Mean-Field (SMF)
approach. Sufficiently below the fusion barrier, di-nuclear structure in the
collisions is maintained to a large extend. Consequently, it is possible to
describe nucleon exchange as a diffusion process familiar from deep-inelastic
collisions. Diffusion coefficients for proton and neutron exchange are
determined from the microscopic basis of the SMF approach in the semi-classical
framework. Calculations show that after a fast charge equilibration the system
drifts toward symmetry over a very long interaction time. Large dispersions of
proton and neutron distributions of the produced fragments indicate that
diffusion mechanism may help to populate heavy trans-uranium elements near the
quasi-fission regime in these collisions
Nucleon exchange in heavy-ion collisions within stochastic mean-field approach
Nucleon exchange mechanism is investigated in deep-inelastic symmetric
heavy-ion collisions in the basis of the Stochastic Mean-Field approach. By
extending the previous work to off-central collisions, analytical expression is
deduced for diffusion coefficient of nucleon exchange mechanism. Numerical
calculations are carried out for Ca + Ca and Zr +
Zr systems and the results are compared with the phenomenological
nucleon exchange model. Also, calculations are compared with the available
experimental results of deep-inelastic collisions between calcium nuclei.Comment: 8 pages, 7 figure
A Search for pair production of the LSP at the CLIC via RPV Decays
In this work we consider pair production of LSP tau-sneutrinos at the Compact
Lineer Collider. We assume that tau-sneutrinos decays in to e\textmu pair via
RPV interactions. Backgroundless subprocess
is analyzed in details. Achievable limits on
at and CL are
obtained depending on mass.Comment: 8 pages, 5 figure
Quantal description of nucleon exchange in stochastic mean-field approach
Nucleon exchange mechanism is investigated in central collisions of symmetric
heavy-ions in the basis of the stochastic mean-field approach. Quantal
diffusion coefficients for nucleon exchange are calculated by including
non-Markovian effects and shell structure. Variances of fragment mass
distributions are calculated in central collisions of Ca +
Ca, Ca + Ca and Ni + Ni systems
Polarization Beam Splitter Based on Self-Collimation of a Hybrid Photonic Crystal
A photonic crystal polarization beam splitter based on photonic band gap and self-collimation effects is designed for optical communication wavelengths. The photonic crystal structure consists of a polarization-insensitive self-collimation region and a splitting region. TM- and TE-polarized waves propagate without diffraction in the self-collimation region, whereas they split by 90 degrees in the splitting region. Efficiency of more than 75% for TM- and TE-polarized light is obtained for a polarization beam splitter size of only 17 μm x 17 μm in a wavelength interval of 60 nm including 1.55 μm
Cosmological test of the Yilmaz theory of gravity
We test the Yilmaz theory of gravitation by working out the corresponding
Friedmann-type equations generated by assuming the Friedmann-Robertson-Walker
cosmological metrics. In the case that space is flat the theory is consistent
only with either a completely empty universe or a negative energy vacuum that
decays to produce a constant density of matter. In both cases the total energy
remains zero at all times, and in the latter case the acceleration of the
expansion is always negative. To obtain a more flexible and potentially more
realistic cosmology, the equation of state relating the pressure and energy
density of the matter creation process must be different from the vacuum, as
for example is the case in the steady-state models of Gold, Bondi, Hoyle and
others. The theory does not support the cosmological principle for curved space
K =/= 0 cosmological metrics
Quantum effects in the diffusion process to form a heavy nucleus in heavy-ion fusion reactions
We discuss quantum effects in the diffusion process which is used to describe the shape evolution from the touching configuration of fusing two nuclei to a compound nucleus. Applying the theory with quantum effects to the case where the potential field, the mass and friction parameters are adapted to realistic values of heavy-ion collisions, we show that the quantum effects play significant roles at low temperatures which are relevant to the synthesis of superheavy elements
Photometric, Spectroscopic and Orbital Period Study of Three Early Type Semi-detached Systems: XZ Aql, UX Her and AT Peg
In this paper we present a combined photometric, spectroscopic and orbital
period study of three early-type eclipsing binary systems: XZ Aql, UX Her, and
AT Peg. As a result, we have derived the absolute parameters of their
components and, on that basis, we discuss their evolutionary states.
Furthermore, we compare their parameters with those of other binary systems and
with the theoretical models. An analysis of all available up-to-date times of
minima indicated that all three systems studied here show cyclic orbital
changes, their origin is discussed in detail. Finally, we performed a frequency
analysis for possible pulsational behavior and as a result we suggest that XZ
Aql hosts a {\delta} Scuti component.Comment: 40 pages, 16 figure
- …
