272 research outputs found

    Adaptive Control Allocation for Over-Actuated Systems with Actuator Saturation

    Get PDF
    This paper proposes an adaptive control allocation approach for over-actuated systems with actuator saturation. The methodology can tolerate actuator loss of effectiveness without utilizing the control input matrix estimation, eliminating the need for persistence of excitation. Closed loop reference model adaptive controller is used for identifying adaptive parameters, which provides improved performance without introducing undesired oscillations. The modular design of the proposed control allocation method improves the flexibility to develop the outer loop controller and the control allocation strategy separately. The ADMIRE model is used as an over-actuated system, to demonstrate the effectiveness of the proposed method using simulation results. © 201

    Fault tolerant control for over-actuated systems: An adaptive correction approach

    Get PDF
    This paper proposes an adaptive fault tolerant control allocation approach for over-actuated systems. The methodology does not utilize the control input matrix estimation to tolerate actuator faults and, therefore, the proposed control allocation method does not require persistence of excitation. Adaptive control approach with a closed loop reference model is used for identifying control allocation parameters, which provides improved performance without introducing undesired oscillations. Furthermore, a sliding mode controller is used to guarantee the outer loop asymptotic stability. Simulation results are provided, where the ADMIRE model is used as an over-actuated system, to demonstrate the effectiveness of the proposed method. © 2016 American Automatic Control Council (AACC)

    Energy consumption forecasting via order preserving pattern matching

    Get PDF
    We study sequential prediction of energy consumption of actual users under a generic loss/utility function. Particularly, we try to determine whether the energy usage of the consumer will increase or decrease in the future, which can be subsequently used to optimize energy consumption. To this end, we use the energy consumption history of the users and define finite state (FS) predictors according to the relative ordering patterns of these past observations. In order to alleviate the overfitting problems, we generate equivalence classes by tying several states in a nested manner. Using the resulting equivalence classes, we obtain a doubly exponential number of different FS predictors, one among which achieves the smallest accumulated loss, hence is optimal for the prediction task. We then introduce an algorithm to achieve the performance of this FS predictor among all doubly exponential number of FS predictors with a significantly reduced computational complexity. Our approach is generic in the sense that different tying configurations and loss functions can be incorporated into our framework in a straightforward manner. We illustrate the merits of the proposed algorithm using the real life energy usage data. © 2014 IEEE

    Sequential Prediction over Hierarchical Structures

    Get PDF
    We study sequential compound decision problems in the context of sequential prediction of real valued sequences. In particular, we consider finite state (FS) predictors that are constructed based on a hierarchical structure, such as the order preserving patterns of the sequence history. We define hierarchical equivalence classes by tying certain models at a hierarchy level in a recursive manner in order to mitigate undertraining problems. These equivalence classes defined on a hierarchical structure are then used to construct a super exponential number of sequential FS predictors based on their combinations and permutations. We then introduce truly sequential algorithms with computational complexity only linear in the pattern length that 1) asymptotically achieve the performance of the best FS predictor or the best linear combination of all the FS predictors in an individual sequence manner without any stochastic assumptions over any data length n under a wide range of loss functions; 2) achieve the mean square error of the best linear combination of all FS filters or predictors in the steady-state for certain nonstationary models. We illustrate the superior convergence and tracking capabilities of our algorithm with respect to several state-of-the-art methods in the literature through simulations over synthetic and real benchmark data. © 1991-2012 IEEE

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore