67 research outputs found

    Application Research of Fish-Plant Symbiosis Technology in a Urban Lake: A Case Study of the Environment Remediation Project with Machine Learning Application

    Get PDF
    This research examines the Jiefang Park Water Environment Remediation Project, a pioneering initiative in urban lake rehabilitation. The project is anchored in a fish-plant symbiosis system, which has significantly improved water quality, upgrading it from Category V to Category III, and in certain zones, achieving the commendable Category II. This enhancement is quantitatively marked by a notable reduction in nitrogen and phosphorus levels, and a marked increase in water transparency, with submerged plants covering over 70% of the lakebed.A key innovation is the utilization of a machine learning model to predict chlorophyll-a concentration, a vital water quality metric. The model’s accuracy is underscored by its R² values, ranging from 0.23 to 0.99, and RMSE values between 6.921 and 0.237, with the best performance at point 1. Additionally, comprehensive measurement data highlight the project’s effectiveness. Water transparency significantly improved from baseline levels, as evidenced by increased dissolved oxygen levels at various sampling sites, indicative of restored ecological equilibrium in the lake. This study represents an exemplary fusion of ecological restoration and advanced data analytics, signifying a substantial advancement in urban lake restoration. It underscores the potential of combining synergistic ecological approaches with technological innovation to further sustainable urban environmental management

    Revealing a Mutant-Induced Receptor Allosteric Mechanism for the Thyroid Hormone Resistance.

    Get PDF
    Resistance to thyroid hormone (RTH) is a clinical disorder without specific and effective therapeutic strategy, partly due to the lack of structural mechanisms for the defective ligand binding by mutated thyroid hormone receptors (THRs). We herein uncovered the prescription drug roxadustat as a novel THRβ-selective ligand with therapeutic potentials in treating RTH, thereby providing a small molecule tool enabling the first probe into the structural mechanisms of RTH. Despite a wide distribution of the receptor mutation sites, different THRβ mutants induce allosteric conformational modulation on the same His435 residue, which disrupts a critical hydrogen bond required for the binding of thyroid hormones. Interestingly, roxadustat retains hydrophobic interactions with THRβ via its unique phenyl extension, enabling the rescue of the activity of the THRβ mutants. Our study thus reveals a critical receptor allosterism mechanism for RTH by mutant THRβ, providing a new and viable therapeutic strategy for the treatment of RTH

    Revealing a Mutant-Induced Receptor Allosteric Mechanism for the Thyroid Hormone Resistance

    Get PDF
    Summary(#br)Resistance to thyroid hormone (RTH) is a clinical disorder without specific and effective therapeutic strategy, partly due to the lack of structural mechanisms for the defective ligand binding by mutated thyroid hormone receptors (THRs). We herein uncovered the prescription drug roxadustat as a novel THRβ-selective ligand with therapeutic potentials in treating RTH, thereby providing a small molecule tool enabling the first probe into the structural mechanisms of RTH. Despite a wide distribution of the receptor mutation sites, different THRβ mutants induce allosteric conformational modulation on the same His435 residue, which disrupts a critical hydrogen bond required for the binding of thyroid hormones. Interestingly, roxadustat retains hydrophobic interactions with THRβ via its unique phenyl extension, enabling the rescue of the activity of the THRβ mutants. Our study thus reveals a critical receptor allosterism mechanism for RTH by mutant THRβ, providing a new and viable therapeutic strategy for the treatment of RTH

    Recent Progress in Phage Therapy to Modulate Multidrug-Resistant Acinetobacter baumannii, Including in Human and Poultry

    Get PDF
    Acinetobacter baumannii is a multidrug-resistant and invasive pathogen associated with the etiopathology of both an increasing number of nosocomial infections and is of relevance to poultry production systems. Multidrug-resistant Acinetobacter baumannii has been reported in connection to severe challenges to clinical treatment, mostly due to an increased rate of resistance to carbapenems. Amid the possible strategies aiming to reduce the insurgence of antimicrobial resistance, phage therapy has gained particular importance for the treatment of bacterial infections. This review summarizes the different phage-therapy approaches currently in use for multiple-drug resistant Acinetobacter baumannii, including single phage therapy, phage cocktails, phage–antibiotic combination therapy, phage-derived enzymes active on Acinetobacter baumannii and some novel technologies based on phage interventions. Although phage therapy represents a potential treatment solution for multidrug-resistant Acinetobacter baumannii, further research is needed to unravel some unanswered questions, especially in regard to its in vivo applications, before possible routine clinical use

    Activation of Human Stearoyl-Coenzyme A Desaturase 1 Contributes to the Lipogenic Effect of PXR in HepG2 Cells

    Get PDF
    The pregnane X receptor (PXR) was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increased. However, the free cholesterol and triglyceride levels were not changed. Treatment of HepG2 cells with rifampicin induced the expression of the free fatty acid transporter CD36 and ABCG1, as well as several lipogenic enzymes, including stearoyl-CoA desaturase-1 (SCD1), long chain free fatty acid elongase (FAE), and lecithin-cholesterol acyltransferase (LCAT), while the expression of acyl:cholesterol acetyltransferase(ACAT1) was not affected. Moreover, in PXR over-expressing HepG2 cells (HepG2-PXR), the SCD1 expression was significantly higher than in HepG2-Vector cells, even in the absence of rifampicin. Down-regulation of PXR by shRNA abolished the rifampicin-induced SCD1 gene expression in HepG2 cells. Promoter analysis showed that the human SCD1 gene promoter is activated by PXR and a novel DR-7 type PXR response element (PXRE) response element was located at -338 bp of the SCD1 gene promoter. Taken together, these results indicated that PXR activation promoted lipid synthesis in HepG2 cells and SCD1 is a novel PXR target gene. © 2013 Zhang et al

    The mitochondrial DNA 4,977-bp deletion and its implication in copy number alteration in colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Qualitative and quantitative changes in human mitochondrial DNA (mtDNA) have been implicated in various cancer types. A 4,977 bp deletion in the major arch of the mitochondrial genome is one of the most common mutations associated with a variety of human diseases and aging.</p> <p>Methods</p> <p>We conducted a comprehensive study on clinical features and mtDNA of 104 colorectal cancer patients in the Wenzhou area of China. In particular, using a quantitative real time PCR method, we analyzed the 4,977 bp deletion and mtDNA content in tumor tissues and paired non-tumor areas from these patients.</p> <p>Results</p> <p>We found that the 4,977 bp deletion was more likely to be present in patients of younger age (≤65 years, p = 0.027). In patients with the 4,977 bp deletion, the deletion level decreased as the cancer stage advanced (p = 0.031). Moreover, mtDNA copy number in tumor tissues of patients with this deletion increased, both compared with that in adjacent non-tumor tissues and with in tumors of patients without the deletion. Such mtDNA content increase correlated with the levels of the 4,977 bp deletion and with cancer stage (p < 0.001).</p> <p>Conclusions</p> <p>Our study indicates that the mtDNA 4,977 bp deletion may play a role in the early stage of colorectal cancer, and it is also implicated in alteration of mtDNA content in cancer cells.</p

    Mielenosoitus digitaaliaikana: kuinka digitaalinen tieto- ja viestintätekniikka muuttaa massapoliittisen mobilisoinnin maisemaa

    No full text
    This literature review investigates the impact of digital information and communication technology (ICT) on mass political mobilization. By reviewing five empirical cases with diversified technologies and regime types, I find that the diffusion of digital ICT has an overall positive effect on protest turnout. To find sources for the potential mechanism behind the fostering effect, I refer to the Liberation Technology hypothesis by Diamong (2010) and the theoretical model by Little (2016). The analysis in the model suggests that digital ICT potentially facilitates protests through airing antiregime content and spreading the logistic information of protest coordination. The empirical studies mostly focus on examining whether the adoption of digital ICT is causal to the protest break out. The evidence covers large-scale protests from both democratic and non-democratic countries, as well as different technologies (mobile phones, the broadband Internet, and social media platforms). Though not all digital ICT is causal to the protest incidence, the studies yield mostly positive conclusions about its acceleration of protests. Additionally, the empirical evidence shows that the primary mechanisms through which digital ICT affects mass mobilization are information and coordination channels

    Different innate immunity and clearance of in macrophages from White Leghorn and Tibetan Chickens

    No full text
    Salmonella enterica serovar Gallinarum biovar Pullorum ( S. Pullorum ) is responsible for the systemic salmonellosis in different breeds of chickens. Macrophages, as host cells, play a key role in the innate immune response following infection with S. Pullorum . In this study, we first generated macrophages from two breeds of chicken (White Leghorn (WL) and Tibetan Chickens (TC)) peripheral blood monocytes in vitro. Then, we showed that the production of interleukin-1β (IL-1β), macrophage inflammatory protein-1β (MIP-1β) and interleukin-10 (IL-10) in lipopolysaccharide (LPS)-treated macrophages was significantly higher compared with the unstimulated cells in TC. LPS triggered only more expression of IL-10 in WL macrophages. Furthermore, macrophages from TC eliminated intracellular bacteria more efficiently than those from WL after S. Pullorum infection at a multiplicity of infection (MOI) 1. In addition, the variation between individuals and sex had the crucial effect on the immune response to LPS and S. Pullorum invasion
    • …
    corecore