210 research outputs found

    Do Housekeeping Genes Exist?

    Get PDF
    The searching of human housekeeping (HK) genes has been a long quest since the emergence of transcriptomics, and is instrumental for us to understand the structure of genome and the fundamentals of biological processes. The resolved genes are frequently used in evolution studies and as normalization standards in quantitative gene-expression analysis. Within the past 20 years, more than a dozen HK-gene studies have been conducted, yet none of them sampled human tissues completely. We believe an integration of these results will help remove false positive genes owing to the inadequate sampling. Surprisingly, we only find one common gene across 15 examined HK-gene datasets comprising 187 different tissue and cell types. Our subsequent analyses suggest that it might not be appropriate to rigidly define HK genes as expressed in all tissue types that have diverse developmental, physiological, and pathological states. It might be beneficial to use more robustly identified HK functions for filtering criteria, in which the representing genes can be a subset of genome. These genes are not necessarily the same, and perhaps need not to be the same, everywhere in our body

    Provable Efficient Certificateless Public Key Encryption

    Get PDF
    Certificateless public key cryptography was introduced to overcome the key escrow limitation of the identity-based cryptography. It combines the advantages of the identity-based cryptography and the traditional PKI. Recently, Dae Hyun Yum1 and Pil Joong Lee have proposed a generic series construction model of certificateless public key encryption (CL-PKE) which is built from generic primitives: identity-based encryption and public key encryption. However, this model pays much attention on the generic construction and neglects the nice properties of the bilinear pairings. In this paper, we propose an efficient CL-PKE scheme which is based on the nice algebraic properties of Weil pairing. The scheme works in a kind of parallel model and it is more efficient on computation or published public key information than the existing schemes

    Correlation of the Nest Density and the Number of Workers in Bait Traps for Fire Ants (Solenopsis invicta) in Southern China

    Get PDF
    The relationship between Solenopsis invicta nest density and the number of fire ant workers in bait traps and percentages of traps capturing ants were investigated in the waste land of Wuchuan, Guangdong, South China. The results showed that fire ant nest density is positively correlated with the number of workers captured in traps, and could be described by N=60.53LnD +348.0D+421.1. The workers exceeded 200 and 300 in bait traps while the density of fire ant nests was over 0.023 and 0.084 ind./m2, respectively. The percentages of traps capturing ants were also positively correlated with fire ant nest density and fit by Pe=1/(1+e0.9694-309.85D). When the nest density was over 0.018 ind./m2, over 99% of traps captured fire ant workers. N=8.8796e0.0346Pe was the fitting line for worker amount and trap percentage. The workers per trap were about 50, 100, and 200 when the trap percentages were 50%, 70% and 90%, respectively

    Designing MOF Nanoarchitectures for Electrochemical Water Splitting

    Get PDF
    Electrochemical water splitting has attracted significant attention as a key pathway for the development of renewable energy systems. Fabricating efficient electrocatalysts for these processes is intensely desired to reduce their overpotentials and facilitate practical applications. Recently, metal-organic framework (MOF) nanoarchitectures featuring ultrahigh surface areas, tunable nanostructures, and excellent porosities have emerged as promising materials for the development of highly active catalysts for electrochemical water splitting. Herein, the most pivotal advances in recent research on engineering MOF nanoarchitectures for efficient electrochemical water splitting are presented. First, the design of catalytic centers for MOF-based/derived electrocatalysts is summarized and compared from the aspects of chemical composition optimization and structural functionalization at the atomic and molecular levels. Subsequently, the fast-growing breakthroughs in catalytic activities, identification of highly active sites, and fundamental mechanisms are thoroughly discussed. Finally, a comprehensive commentary on the current primary challenges and future perspectives in water splitting and its commercialization for hydrogen production is provided. Hereby, new insights into the synthetic principles and electrocatalysis for designing MOF nanoarchitectures for the practical utilization of water splitting are offered, thus further promoting their future prosperity for a wide range of applications

    Design of a trichogramma balls UAV delivery system and quality analysis of delivery operation

    Get PDF
    The field boundaries in our country are complex. In attempts to control pests via trichogramma-dominated biological control, the long-term practice of manual trichogramma release has resulted in low control efficiency, thereby impeding sustainable agricultural development. Currently, the novel approach involves utilizing Unmanned Aerial Vehicles (UAVs) for trichogramma balls delivery; however, the system is still in its nascent stages, presenting opportunities for enhancement in terms of stability and accuracy. Furthermore, there is a notable absence of comprehensive operational quality assessment standards. In this study, we establish a stable and accurate trichogramma balls delivery system using a four-axis plant protection UAV and introduce a comprehensive evaluation method for trichogramma balls delivery system. When dealing with fields with complex boundaries, it is beneficial to divide them into rectangular, trapezoidal, and stepped small fields at the boundary and perform operations within these small fields. According to our proposed evaluation method, when only considering the effect of field operations, the most effective boundary division shape is trapezoidal, followed by rectangular. and the worst is stepped. If both field operation effectiveness and the utilization effect of placed trichogramma balls are considered, the optimal shape is trapezoidal, then stepped, with rectangular being the least effective. Consequently, for UAV sub-area operations in complex boundary fields, it is advisable to divide the boundaries into trapezoids wherever possible. Field experiment results indicate that the system’s delivery area can reach up to 4158 m²/min and the coverage rate of released trichogramma balls can exceed 97%. The system design methodology and comprehensive operational quality evaluation method proposed in this article provide technical support and scientific basis for the application and promotion of UAV delivery trichogramma balls system. This is conducive to the high-quality development of agriculture

    Radioprotective Effect of Grape Seed Proanthocyanidins In Vitro and In Vivo

    Get PDF
    We have demonstrated that grape seed proanthocyanidins (GSPs) could effectively scavenge hydroxyl radical (•OH) in a dose-dependent manner. Since most of the ionizing radiation- (IR-) induced injuries were caused by •OH, this study was to investigate whether GSPs would mitigate IR-induced injuries in vitro and in vivo. We demonstrated that GSPs could significantly reduce IR-induced DNA strand breaks (DSBs) and apoptosis of human lymphocyte AHH-1 cells. This study also showed that GSPs could protect white blood cells (WBC) from IR-induced injuries, speed up the weight of mice back, and decrease plasma malondialdehyde (MDA), thus improving the survival rates of mice after ionizing radiation. It is suggested that GSPs have a potential as an effective and safe radioprotective agent

    Recent Progress in Phage Therapy to Modulate Multidrug-Resistant Acinetobacter baumannii, Including in Human and Poultry

    Get PDF
    Acinetobacter baumannii is a multidrug-resistant and invasive pathogen associated with the etiopathology of both an increasing number of nosocomial infections and is of relevance to poultry production systems. Multidrug-resistant Acinetobacter baumannii has been reported in connection to severe challenges to clinical treatment, mostly due to an increased rate of resistance to carbapenems. Amid the possible strategies aiming to reduce the insurgence of antimicrobial resistance, phage therapy has gained particular importance for the treatment of bacterial infections. This review summarizes the different phage-therapy approaches currently in use for multiple-drug resistant Acinetobacter baumannii, including single phage therapy, phage cocktails, phage–antibiotic combination therapy, phage-derived enzymes active on Acinetobacter baumannii and some novel technologies based on phage interventions. Although phage therapy represents a potential treatment solution for multidrug-resistant Acinetobacter baumannii, further research is needed to unravel some unanswered questions, especially in regard to its in vivo applications, before possible routine clinical use

    Comprehensive analysis of a NAD+ metabolism-derived gene signature to predict the prognosis and immune landscape in endometrial cancer

    Get PDF
    As a crucial regulator influencing tumor progression, nicotinamide adenine dinucleotide (NAD+) is widely acknowledged. However, its role in endometrial cancer (EC) is not completely understood. In this study, we aimed to develop an NAD+metabolic-related genes (NMRGs) risk signature that could reflect the prognosis of EC patients and their responsiveness to immunotherapy and chemotherapy. Data from The Cancer Genome Atlas (TCGA) databases and the Molecular Signatures Database (MSigDB) confirmed two distinct NMRG subtypes in EC patients using consensus clustering, and a risk score was constructed utilizing an NAD+-related prognostic signature depending on the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Receiver operating characteristic (ROC) curves were employed to assess the model’s precision. Additionally, we used Gene Set Enrichment Analysis (GSEA) to predict the biological signaling pathways that might be involved. We also explored the role of the risk score in immune cell infiltration, tumor mutation burden (TMB), immunotherapy, and chemotherapy. Our study established a prognostic risk signature based on six NMRGs, and we observed that the high-risk group was associated with a poorer prognosis. Furthermore, we identified a strong correlation between the high-risk group and several pathways, including DNA replication, cell cycle, and mismatch repair. Lastly, our findings highlighted the influence of NMRGs on the regulation of immune infiltration in EC. Therefore, this signature holds potential value in predicting the prognosis of EC patients and guiding their management, including decisions regarding immunotherapy and chemotherapy, ultimately improving the accuracy of EC patient care
    • …
    corecore