412 research outputs found

    Mean-reverting behavior of consumption-income ratio in OECD countries: evidence from SURADF panel unit root tests

    Get PDF
    This paper examines the existence of the mean-reverting behavior of the consumption-income ratio from a panel of 24 OECD countries through the application of the series-specific SURADF panel unit root test. The results show that the consumption-income ratios in 22 OECD countries exhibit mean-reverting behavior. Furthermore, the half-life of the consumption-income ratio for these 22 OECD countries is between 0.28 to 3.48 years. This implies that policy shocks in industrialized economies are not likely to have permanent effects on the consumption-income ratio.Mean reversion; Consumption-income ratio; SURADF; Half-life

    Adaptive Backstepping Control for a Class of Uncertain Nonaffine Nonlinear Time-Varying Delay Systems with Unknown Dead-Zone Nonlinearity

    Get PDF
    An adaptive backstepping controller is constructed for a class of nonaffine nonlinear time-varying delay systems in strict feedback form with unknown dead zone and unknown control directions. To simplify controller design, nonaffine system is first transformed into an affine system by using mean value theorem and the unknown nonsymmetric dead-zone nonlinearity is treated as a combination of a linear term and a bounded disturbance-like term. Owing to the universal approximation property, fuzzy logic systems (FLSs) are employed to approximate the uncertain nonlinear part in controller design process. By introducing Nussbaum-type function, the a priori knowledge of the control gains signs is not required. By constructing appropriate Lyapunov-Krasovskii functionals, the effect of time-varying delay is compensated. Theoretically, it is proved that this scheme can guarantee that all signals in closed-loop system are semiglobally uniformly ultimately bounded (SUUB) and the tracking error converges to a small neighbourhood of the origin. Finally, the simulation results validate the effectiveness of the proposed scheme

    Prognostic impact of H3K27me3 expression on locoregional progression after chemoradiotherapy in esophageal squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trimethylation of lysine 27 on histone H3 (H3K27me3) by enhancer of zeste homolog 2 (EZH2) is an epigenetic mark that mediates gene silencing. EZH2 is overexpressed and correlates with poor prognosis in many cancers. However, the clinical implication of H3K27me3 in human malignancies has not been well established. We wished to ascertain whether a correlation exists between the expression of H3K27me3 and clinical outcome in a group of patients with esophageal squamous cell carcinoma (ESCC) treated with definitive chemoradiotherapy (CRT).</p> <p>Methods</p> <p>The method of immunohistochemistry (IHC) was utilized to examine the protein expression of H3K27me3 in 98 pretreatment biopsy specimens of ESCC and in 30 samples of normal esophageal mucosa. The clinical/prognostic significance of H3K27me3 expression was statistically analyzed.</p> <p>Results</p> <p>The expression frequency and expression levels of H3K27me3 were significantly higher in ESCCs than in normal tissues. There was a positive correlation between H3K27me3 expression and WHO grade (<it>P </it>= 0.016), tumor size (<it>P </it>= 0.019), T status (<it>P </it>= 0.024), locoregional progression (<it>P </it>= 0.009) and EZH2 expression (<it>P </it>= 0.036). High H3K27me3 expression was associated with poor locoregional progression-free survival (LPFS) (<it>P </it>= 0.010) in ESCC. Further analysis demonstrated that H3K27me3 could stratify patient outcome in T2-3 (<it>P </it>= 0.048), N0 (<it>P </it>= 0.005) and M0 (<it>P </it>= 0.018) stages as well as in CRT effective group (<it>P </it>= 0.022).</p> <p>Conclusions</p> <p>Our data suggests that H3K27me3 expression examined by IHC might be useful for stratifying LPFS for different subsets of ESCC patients treated with definitive CRT.</p

    Effects of high CD4 cell counts on death and attrition among HIV patients receiving antiretroviral treatment: an observational cohort study

    Get PDF
    Current WHO guidelines recommend initiating ART regardless of CD4+ cell count. In response, we conducted an observational cohort study to assess the effects of pre-ART CD4+ cell count levels on death, attrition, and death or attrition in HIV treated patients. This large HIV treatment cohort study (n = 49,155) from 2010 to 2015 was conducted in Guangxi, China. We used a Cox regression model to analyze associations between pre-ART CD4+ cell counts and death, attrition, and death or attrition. The average mortality and ART attrition rates among all treated patients were 2.63 deaths and 5.32 attritions per 100 person-years, respectively. Compared to HIV patients with 500 CD4+ cells/mm 3 at ART initiation had a significantly lower mortality rate (Adjusted hazard ratio: 0.56, 95% CI: 0.40-0.79), but significantly higher ART attrition rate (AHR: 1.17, 95% CI: 1.03-1.33). Results from this study suggest that HIV patients with high CD4+ cell counts at the time of ART initiation may be at greater risk of treatment attrition. To further reduce ART attrition, it is imperative that patient education and healthcare provider training on ART adherence be enhanced and account for CD4 levels at ART initiation

    The Steroid Receptor Coactivator-3 Is Required for Developing Neuroendocrine Tumor in the Mouse Prostate

    Get PDF
    Neuroendocrine tumor cells (NETCs) are commonly observed in prostate cancer. Their presence is associated with castration resistance, metastasis and poor prognosis. Cellular and molecular mechanisms for NETC initiation and growth are unknown. TRAMP mice develop heterogeneous adenocarcinomas induced by expression of the SV40-T/t oncogene in prostate epithelial cells. Here, we demonstrate prostate tumors in TRAMP mice with a mixed genetic background are characterized mostly by atypical hyperplasia (AH) containing steroid receptor coactiator-3-positive, androgen receptor-positive and synaptophysin-negative (SRC-3+/AR+/Syp-) cells. Few SRC-3+/AR-/Syp+ NETCs are present in their prostates. We generated TRAMP mice in which SRC-3 was specifically ablated in AR+/Syp- prostatic epithelial cells (termed PE3KOT mice). In these animals, we observed a substantial reduction in SRC-3-/AR+/Syp- AH tumor growth. There was a corresponding increase in SRC-3-/AR+/Syp- phyllodes lesions, suggesting SRC-3 knockout can convert aggressive AH tumors with mostly epithelial tumor cells into less aggressive phyllodes lesions with mostly stromal tissue. Surprisingly, PE3KOT mice developed many more SRC-3+/AR-/Syp+ NETCs versus control TRAMP mice, indicating SRC-3 expression was retained in NETCs. In contrast, TRAMP mice with global SRC-3 knockout did not develop any NETC, indicating SRC-3 is required for developing NETC. Analysis of cell-differentiating markers revealed that these NETCs might not be derived from the mature AR-/Syp+ neuroendocrine cells or the AR+/Syp- luminal epithelial tumor cells. Instead, these NETCs might originate from the SV40-T/t-transformed intermediate/progenitor epithelial cells. In summary, SRC-3 is required for both AR+/Syp- AH tumor growth and AR-/Syp+ NETC development, suggesting SRC-3 is a target for inhibiting aggressive prostate cancer containing NETCs

    The global mismatch between equitable carbon dioxide removal liability and capacity

    Get PDF
    Limiting climate change to 1.5°C and achieving net-zero emissions would entail substantial carbon dioxide removal (CDR) from the atmosphere by the mid-century, but how much CDR is needed at country level over time is unclear. The purpose of this paper is to provide a detailed description of when and how much CDR is required at country level in order to achieve 1.5°C and how much CDR countries can carry out domestically. We allocate global CDR pathways among 170 countries according to 6 equity principles and assess these allocations with respect to countries’ biophysical and geophysical capacity to deploy CDR. Allocating global CDR to countries based on these principles suggests that CDR will, on average, represent ∼4% of nations’ total emissions in 2030, rising to ∼17% in 2040. Moreover, equitable allocations of CDR, in many cases, exceed implied land and carbon storage capacities. We estimate ∼15% of countries (25) would have insufficient land to contribute an equitable share of global CDR, and ∼40% of countries (71) would have insufficient geological storage capacity. Unless more diverse CDR technologies are developed, the mismatch between CDR liabilities and land-based CDR capacities will lead to global demand for six GtCO2 carbon credits from 2020 to 2050. This demonstrates an imperative demand for international carbon trading of CDR

    The global mismatch between equitable carbon dioxide removal liability and capacity

    Get PDF
    Limiting climate change to 1.5°C and achieving net-zero emissions would entail substantial carbon dioxide removal (CDR) from the atmosphere by mid-century, but how much CDR is needed at country level over time is unclear. The purpose of this paper is to provide a detailed description of when and how much CDR is required at country level to take in order to achieve 1.5°C and how much CDR countries can carry out domestically. We allocate global CDR pathways among 170 countries according to six equity principles and assess these allocations with respect to countries' biophysical and geophysical capacity to deploy CDR. Allocating global CDR to countries based on these principles suggests that CDR will, on average, represent ∼4% of nations' total emissions in 2030, rising to ∼17% in 2040. Moreover, equitable allocations of CDR, in many cases, exceed implied land and carbon storage capacities. We estimate ∼15% of countries (25) would have insufficient land to contribute an equitable share of global CDR, and ∼40% of countries (71) would have insufficient geological storage capacity. Unless more diverse CDR technologies are developed, the mismatch between CDR liabilities and land-based CDR capacities will lead to global demand for 6 GtCO2 carbon credits from 2020 to 2050. This demonstrates an imperative demand for international carbon trading of CDR

    cDNA Cloning, Overexpression, Purification and Pharmacologic Evaluation for Anticancer Activity of Ribosomal Protein L23A Gene (RPL23A) from the Giant Panda

    Get PDF
    RPL23A gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L23P family of ribosomal proteins, which is located in the cytoplasm. The purpose of this paper was to explore the structure and anti-cancer function of ribosomal protein L23A (RPL23A) gene of the Giant Panda (Ailuropoda melanoleuca). The cDNA of RPL23A was cloned successfully from the Giant Panda using RT-PCR technology. We constructed a recombinant expression vector containing RPL23A cDNA and over-expressed it in Escherichia coli using pET28a plasmids. The expression product obtained was purified by using Ni chelating affinity chromatography. Recombinant protein of RPL23A obtained from the experiment acted on Hep-2 cells and human HepG-2 cells, then the growth inhibitory effect of these cells was observed by MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide) assay. The result indicated that the length of the fragment cloned is 506 bp, and it contains an open-reading frame (ORF) of 471 bp encoding 156 amino acids. Primary structure analysis revealed that the molecular weight of the putative RPL23A protein is 17.719 kDa with a theoretical pI 11.16. The molecular weight of the recombinant protein RPL23A is 21.265 kDa with a theoretical pI 10.57. The RPL23A gene can be really expressed in E. coli and the RPL23A protein, fusioned with the N-terminally His-tagged protein, gave rise to the accumulation of an expected 22 KDa polypeptide. The data showed that the recombinant protein RPL23A had a time- and dose-dependency on the cell growth inhibition rate. The data also indicated that the effect at low concentrations was better than at high concentrations on Hep-2 cells, and that the concentration of 0.185 μg/mL had the best rate of growth inhibition of 36.31%. All results of the experiment revealed that the recombinant protein RPL23A exhibited anti-cancer function on the Hep-2 cells. The study provides a scientific basis and aids orientation for the research and development of cancer protein drugs as well as possible anti-cancer mechanisms. Further research is on going to determine the bioactive principle(s) of recombinant protein RPL23A responsible for its anticancer activity

    Room temperature magnetic phase transition in an electrically-tuned van der Waals ferromagnet

    Full text link
    Finding tunable van der Waals (vdW) ferromagnets that operate at above room temperature is an important research focus in physics and materials science. Most vdW magnets are only intrinsically magnetic far below room temperature and magnetism with square-shaped hysteresis at room-temperature has yet to be observed. Here, we report magnetism in a quasi-2D magnet Cr1.2Te2 observed at room temperature (290 K). This magnetism was tuned via a protonic gate with an electron doping concentration up to 3.8 * 10^21 cm^-3. We observed non-monotonic evolutions in both coercivity and anomalous Hall resistivity. Under increased electron doping, the coercivities and anomalous Hall effects (AHEs) vanished, indicating a doping-induced magnetic phase transition. This occurred up to room temperature. DFT calculations showed the formation of an antiferromagnetic (AFM) phase caused by the intercalation of protons which induced significant electron doping in the Cr1.2Te2. The tunability of the magnetic properties and phase in room temperature magnetic vdW Cr1.2Te2 is a significant step towards practical spintronic devices.Comment: 18 pages, 4 figure
    corecore