47,409 research outputs found

    Dissipation Effects in Hybrid Systems

    Get PDF
    The dissipation effect in a hybrid system is studied in this Letter. The hybrid system is a compound of a classical magnetic particle and a quantum single spin. Two cases are considered. In the first case, we investigate the effect of the dissipative quantum subsystem on the motion of its classical partner. Whereas in the second case we show how the dynamics of the quantum single spin are affected by the dissipation of the classical particle. Extension to general dissipative hybrid systems is discussed.Comment: 4+ pages, 4 figure

    Thermodynamic properties of a dipolar Fermi gas

    Full text link
    Based on the semi-classical theory, we investigate the thermodynamic properties of a dipolar Fermi gas. Through a self-consistent procedure, we numerically obtain the phase space distribution function at finite temperature. We show that the deformations in both momentum and real space becomes smaller and smaller as one increases the temperature. For homogeneous case, we also calculate pressure, entropy, and heat capacity. In particular, at low temperature limit and in weak interaction regime, we obtain an analytic expression for the entropy, which agrees qualitatively with our numerical result. The stability of a trapped gas at finite temperature is also explored

    Dynamical properties of a trapped dipolar Fermi gas at finite temperature

    Full text link
    We investigate the dynamical properties of a trapped finite-temperature normal Fermi gas with dipole-dipole interaction. For the free expansion dynamics, we show that the expanded gas always becomes stretched along the direction of the dipole moment. In addition, we present the temperature and interaction dependences of the asymptotical aspect ratio. We further study the collapse dynamics of the system by suddenly increasing the dipolar interaction strength. We show that, in contrast to the anisotropic collapse of a dipolar Bose-Einstein condensate, a dipolar Fermi gas always collapses isotropically when the system becomes globally unstable. We also explore the interaction and temperature dependences for the frequencies of the low-lying collective excitations.Comment: 11 pages, 7 figure
    corecore