6,615 research outputs found
Macroscopic Quantum Coherence in Small Antiferromagnetic Particle and the Quantum Interference Effects
Starting from the Hamiltonian operator of the noncompensated two-sublattice
model of a small antiferromagnetic particle, we derive the effective Lagrangian
of a biaxial antiferromagnetic particle in an external magnetic field with the
help of spin-coherent-state path integrals. Two unequal level-shifts induced by
tunneling through two types of barriers are obtained using the instanton
method. The energy spectrum is found from Bloch theory regarding the periodic
potential as a superlattice. The external magnetic field indeed removes
Kramers' degeneracy, however a new quenching of the energy splitting depending
on the applied magnetic field is observed for both integer and half-integer
spins due to the quantum interference between transitions through two types of
barriers.Comment: 9 pages, Latex, 4 Postscript figure
Valley-selective optical Stark effect in monolayer WS2
Breaking space-time symmetries in two-dimensional crystals (2D) can
dramatically influence their macroscopic electronic properties. Monolayer
transition-metal dichalcogenides (TMDs) are prime examples where the
intrinsically broken crystal inversion symmetry permits the generation of
valley-selective electron populations, even though the two valleys are
energetically degenerate, locked by time-reversal symmetry. Lifting the valley
degeneracy in these materials is of great interest because it would allow for
valley-specific band engineering and offer additional control in valleytronic
applications. While applying a magnetic field should in principle accomplish
this task, experiments to date have observed no valley-selective energy level
shifts in fields accessible in the laboratory. Here we show the first direct
evidence of lifted valley degeneracy in the monolayer TMD WS2. By applying
intense circularly polarized light, which breaks time-reversal symmetry, we
demonstrate that the exciton level in each valley can be selectively tuned by
as much as 18 meV via the optical Stark effect. These results offer a novel way
to control valley degree of freedom, and may provide a means to realize new
valley-selective Floquet topological phases in 2D TMDs
Holographic phase transition in a non-critical holographic model
We consider a holographic model constructed from the intersecting brane
configuration D4-/D4 in noncritical string theory. We study the
chiral phase diagram of this holographic QCD-like model with a finite baryon
chemical potential through the supergravity dual approximation.Comment: 14 pages, reference adde
Tunnel splitting and quantum phase interference in biaxial ferrimagnetic particles at excited states
The tunneling splitting in biaxial ferrimagnetic particles at excited states
with an explicit calculation of the prefactor of exponent is obtained in terms
of periodic instantons which are responsible for tunneling at excited states
and is shown as a function of magnetic field applied along an arbitrary
direction in the plane of hard and medium axes. Using complex time
path-integral we demonstrate the oscillation of tunnel splitting with respect
to the magnitude and the direction of the magnetic field due to the quantum
phase interference of two tunneling paths of opposite windings . The
oscillation is gradually smeared and in the end the tunnel splitting
monotonously increases with the magnitude of the magnetic field when the
direction of the magnetic field tends to the medium axis. The oscillation
behavior is similar to the recent experimental observation with Fe
molecular clusters. A candidate of possible experiments to observe the effect
of quantum phase interference in the ferrimagnetic particles is proposed.Comment: 15 pages, 5 figures, acceptted to be pubblished in Physical Review
CP Violation in within the Minimal Supersymmetric Standard Model
The complete analysis of the CP violation in the process in frame of the Minimal Supersymmetric Model(MSSM) is presented. The
CP-odd observables for describing the CP violating effects in polarized and
unpolarized photon collisions, are calculated. We investigate the possible CP
violation sources induced by the complex soft breaking parameters and study the
CP violating effects contributed by gluino, neutralino and chargino sectors
appearing in the loop diagrams. We find that it is possible to observe the CP
violation effects in top quark pair production via polarized and unpolarized
photon fusions by using optimal observables and favorable parameters.Comment: 15 pages, LaTex, including 14 figures in eps file
- …