186 research outputs found

    An Economic Analysis of Subscription Sharing of Digital Services

    Get PDF
    Subscription sharing, where one shares her premium digital services subscription with other users, has become common due to subscription-sharing platforms like Togetherprice, Gowd, and Sharesub. This raises a question: Does it still make economic sense to offer a menu of subscription plans (e.g., an individual plan as well as a discounted family plan)? In this study, we look at a monopolist service provider that offers both plans but faces the potential threat of subscription sharing. We analyze the optimal prices and the impact of sharing on profit, customer surplus, and overall society benefits. Our results indicate that even with subscription sharing, offering both plans is at least as profitable as only offering individual plans. Under certain conditions, subscription sharing can even boost profits. Furthermore, our numerical analysis suggests that subscription sharing can benefit society. These findings suggest that subscription sharing is not necessarily as troublesome as one would have expected

    Dual Long Short-Term Memory Networks for Sub-Character Representation Learning

    Full text link
    Characters have commonly been regarded as the minimal processing unit in Natural Language Processing (NLP). But many non-latin languages have hieroglyphic writing systems, involving a big alphabet with thousands or millions of characters. Each character is composed of even smaller parts, which are often ignored by the previous work. In this paper, we propose a novel architecture employing two stacked Long Short-Term Memory Networks (LSTMs) to learn sub-character level representation and capture deeper level of semantic meanings. To build a concrete study and substantiate the efficiency of our neural architecture, we take Chinese Word Segmentation as a research case example. Among those languages, Chinese is a typical case, for which every character contains several components called radicals. Our networks employ a shared radical level embedding to solve both Simplified and Traditional Chinese Word Segmentation, without extra Traditional to Simplified Chinese conversion, in such a highly end-to-end way the word segmentation can be significantly simplified compared to the previous work. Radical level embeddings can also capture deeper semantic meaning below character level and improve the system performance of learning. By tying radical and character embeddings together, the parameter count is reduced whereas semantic knowledge is shared and transferred between two levels, boosting the performance largely. On 3 out of 4 Bakeoff 2005 datasets, our method surpassed state-of-the-art results by up to 0.4%. Our results are reproducible, source codes and corpora are available on GitHub.Comment: Accepted & forthcoming at ITNG-201

    Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a growing interest in <it>Jatropha curcas </it>L. (jatropha) as a biodiesel feedstock plant. Variations in its morphology and seed productivity have been well documented. However, there is the lack of systematic comparative evaluation of distinct collections under same climate and agronomic practices. With the several reports on low genetic diversity in jatropha collections, there is uncertainty on genetic contribution to jatropha morphology.</p> <p>Result</p> <p>In this study, five populations of jatropha plants collected from China (CN), Indonesia (MD), Suriname (SU), Tanzania (AF) and India (TN) were planted in one farm under the same agronomic practices. Their agronomic traits (branching pattern, height, diameter of canopy, time to first flowering, dormancy, accumulated seed yield and oil content) were observed and tracked for two years. Significant variations were found for all the agronomic traits studied. Genetic diversity and epigenetic diversity were evaluated using florescence Amplified Fragment Length Polymorphism (fAFLP) and methylation sensitive florescence AFLP (MfAFLP) methods. Very low level of genetic diversity was detected (polymorphic band <0.1%) within and among populations. In contrast, intermediate but significant epigenetic diversity was detected (25.3% of bands were polymorphic) within and among populations. More than half of CCGG sites surveyed by MfAFLP were methylated with significant difference in inner cytosine and double cytosine methylation among populations. Principal coordinates analysis (PCoA) based on Nei's epigenetic distance showed Tanzania/India group distinct from China/Indonesia/Suriname group. Inheritance of epigenetic markers was assessed in one F1 hybrid population between two morphologically distinct parent plants and one selfed population. 30 out of 39 polymorphic markers (77%) were found heritable and followed Mendelian segregation. One epiallele was further confirmed by bisulphite sequencing of its corresponding genomic region.</p> <p>Conclusion</p> <p>Our study confirmed climate and practice independent differences in agronomic performance among jatropha collections. Such agronomic trait variations, however, were matched by very low genetic diversity and medium level but significant epigenetic diversity. Significant difference in inner cytosine and double cytosine methylation at CCGG sites was also found among populations. Most epigenetic differential markers can be inherited as epialleles following Mendelian segregation. These results suggest possible involvement of epigenetics in jatropha development.</p

    Spatiotemporal evolution and climbing curve simulation of land green use efficiency in urban agglomerations of China

    Get PDF
    [Objective] The aim is to reveal and validate the wave-like climbing pattern of land green use efficiency in urban agglomerations, providing decision support for promoting integrated enhancement of land green use efficiency and collaborative use of land resources within urban agglomerations. [Methods] Using panel data from 2006 to 2020, taking urban agglomerations of China as the research object, this study first analyzed the basic principles of the evolution of land green use efficiency in urban agglomerations based on the theories of urban functional interaction, spatial justice, and the adaptability theory of human-environment systems. Subsequently, methods including the non-expected output super-efficiency SBM model, joint intensity and threshold model, and numerical simulation were employed to explore the spatial-temporal characteristics and climbing patterns of land green use efficiency in these urban agglomerations. [Results] (1) The overall trend of land green use efficiency in urban agglomerations of China is upward, and spatially exhibiting a distribution of ā€œhigher in the north and south, lower in the middle, and higher in the west and lower in the eastā€; (2) The joint intensity of land green use between the central cities and neighboring cities continues to increase, with a threshold limitation. The process of central cities jointly arranging land green use with surrounding cities presents a step-like diffusion pattern from the central cities to the periphery; (3) The fluctuating climbing curve of land green use efficiency in urban agglomerations with the changes in time and the joint development of cities has been verified in practice, and the fitting is reasonable. [Conclusion] Cooperation between the central city and neighboring cities in the field of land green use of land resources in urban agglomerations should be strengthened. Clarifying the functional positioning of citiesļ¼Œ through functional streamlining or aggregation, industrial chain integration, and the integrated development of industrial interactions can promote the formation of a high-quality development pattern of national land space

    Thermal evolution of spin excitations in honeycomb Ising antiferromagnetic FePSe3

    Full text link
    We use elastic and inelastic neutron scattering (INS) to study the antiferromagnetic (AF) phase transitions and spin excitations in the two-dimensional (2D) zig-zag antiferromagnet FePSe3_3. By determining the magnetic order parameter across the AF phase transition, we conclude that the AF phase transition in FePSe3_3 is first-order in nature. In addition, our INS measurements reveal that the spin waves in the AF ordered state have a large easy-axis magnetic anisotropy gap, consistent with an Ising Hamiltonian, and possible biquadratic magnetic exchange interactions. On warming across TNT_N, we find that dispersive spin excitations associated with three-fold rotational symmetric AF fluctuations change into FM spin fluctuations above TNT_N. These results suggest that the first-order AF phase transition in FePSe3_3 may arise from the competition between C3C_3 symmetric AF and C1C_1 symmetric FM spin fluctuations around TNT_N, in place of a conventional second-order AF phase transition

    Reduction of the HIV Protease Inhibitor-Induced ER Stress and Inflammatory Response by Raltegravir in Macrophages

    Get PDF
    Background HIV protease inhibitor (PI), the core component of highly active antiretroviral treatment (HAART) for HIV infection, has been implicated in HAART-associated cardiovascular complications. Our previous studies have demonstrated that activation of endoplasmic reticulum (ER) stress is linked to HIV PI-induced inflammation and foam cell formation in macrophages. Raltegravir is a first-in-its-class HIV integrase inhibitor, the newest class of anti-HIV agents. We have recently reported that raltegravir has less hepatic toxicity and could prevent HIV PI-induced dysregulation of hepatic lipid metabolism by inhibiting ER stress. However, little information is available as to whether raltegravir would also prevent HIV PI-induced inflammatory response and foam cell formation in macrophages. Methodology and Principal Findings In this study, we examined the effect of raltegravir on ER stress activation and lipid accumulation in cultured mouse macrophages (J774A.1), primary mouse macrophages, and human THP-1-derived macrophages, and further determined whether the combination of raltegravir with existing HIV PIs would potentially exacerbate or prevent the previously observed activation of inflammatory response and foam cell formation. The results indicated that raltegravir did not induce ER stress and inflammatory response in macrophages. Even more interestingly, HIV PI-induced ER stress, oxidative stress, inflammatory response and foam cell formation were significantly reduced by raltegravir. High performance liquid chromatography (HPLC) analysis further demonstrated that raltegravir did not affect the uptake of HIV PIs in macrophages. Conclusion and Significance Raltegravir could prevent HIV PI-induced inflammatory response and foam cell formation by inhibiting ER stress. These results suggest that incorporation of this HIV integrase inhibitor may reduce the cardiovascular complications associated with current HAART

    Fatty Acid Desaturase 1 Influences Hepatic Lipid Homeostasis by Modulating the PPARĪ±ā€FGF21 Axis

    Get PDF
    The fatty acid desaturase 1 (FADS1), also known as delta-5 desaturase (D5D), is one of the rate-limiting enzymes involved in the desaturation and elongation cascade of polyunsaturated fatty acids (PUFAs) to generate long-chain PUFAs (LC-PUFAs). Reduced function of D5D and decreased hepatic FADS1 expression, as well as low levels of LC-PUFAs, were associated with nonalcoholic fatty liver disease. However, the causal role of D5D in hepatic lipid homeostasis remains unclear. In this study, we hypothesized that down-regulation of FADS1 increases susceptibility to hepatic lipid accumulation. We used in vitro and in vivo models to test this hypothesis and to delineate the molecular mechanisms mediating the effect of reduced FADS1 function. Our study demonstrated that FADS1 knockdown significantly reduced cellular levels of LC-PUFAs and increased lipid accumulation and lipid droplet formation in HepG2 cells. The lipid accumulation was associated with significant alterations in multiple pathways involved in lipid homeostasis, especially fatty acid oxidation. These effects were demonstrated to be mediated by the reduced function of the peroxisome proliferator-activated receptor alpha (PPARĪ±)-fibroblast growth factor 21 (FGF21) axis, which can be reversed by treatment with docosahexaenoic acid, PPARĪ± agonist, or FGF21. In vivo, FADS1-knockout mice fed with high-fat diet developed increased hepatic steatosis as compared with their wild-type littermates. Molecular analyses of the mouse liver tissue largely corroborated the observations in vitro, especially along with reduced protein expression of PPARĪ± and FGF21. Conclusion: Collectively, these results suggest that dysregulation in FADS1 alters liver lipid homeostasis in the liver by down-regulating the PPARĪ±-FGF21 signaling axis

    Symmetry breaking and ascending in the magnetic kagome metal FeGe

    Full text link
    Spontaneous symmetry breaking-the phenomenon where an infinitesimal perturbation can cause the system to break the underlying symmetry-is a cornerstone concept in the understanding of interacting solid-state systems. In a typical series of temperature-driven phase transitions, higher temperature phases are more symmetric due to the stabilizing effect of entropy that becomes dominant as the temperature is increased. However, the opposite is rare but possible when there are multiple degrees of freedom in the system. Here, we present such an example of a symmetry-ascending phenomenon in a magnetic kagome metal FeGe by utilizing neutron Larmor diffraction and Raman spectroscopy. In the paramagnetic state at 460K, we confirm that the crystal structure is indeed hexagonal kagome lattice. On cooling to TN, the crystal structure changes from hexagonal to monoclinic with in-plane lattice distortions on the order of 10^(-4) and the associated splitting of the double degenerate phonon mode of the pristine kagome lattice. Upon further cooling to TCDW, the kagome lattice shows a small negative thermal expansion, and the crystal structure becomes more symmetric gradually upon further cooling. Increasing the crystalline symmetry upon cooling is unusual, it originates from an extremely weak structural instability that coexists and competes with the CDW and magnetic orders. These observations are against the expectations for a simple model with a single order parameter, hence can only be explained by a Landau free energy expansion that takes into account multiple lattice, charge, and spin degrees of freedom. Thus, the determination of the crystalline lattice symmetry as well as the unusual spin-lattice coupling is a first step towards understanding the rich electronic and magnetic properties of the system and sheds new light on intertwined orders where the lattice degree of freedom is no longer dominant

    Intertwined magnetism and charge density wave order in kagome FeGe

    Get PDF
    Electron correlations often lead to emergent orders in quantum materials. Kagome lattice materials are emerging as an exciting platform for realizing quantum topology in the presence of electron correlations. This proposal stems from the key signatures of electronic structures associated with its lattice geometry: flat band induced by destructive interference of the electronic wavefunctions, topological Dirac crossing, and a pair of van Hove singularities (vHSs). A plethora of correlated electronic phases have been discovered amongst kagome lattice materials, including magnetism, charge density wave (CDW), nematicity, and superconductivity. These materials can be largely organized into two types: those that host magnetism and those that host CDW order. Recently, a CDW order has been discovered in the magnetic kagome FeGe, providing a new platform for understanding the interplay between CDW and magnetism. Here, utilizing angle-resolved photoemission spectroscopy, we observe all three types of electronic signatures of the kagome lattice: flat bands, Dirac crossings, and vHSs. From both the observation of a temperature-dependent shift of the vHSs towards the Fermi level as well as guidance via first-principle calculations, we identify the presence of the vHSs near the Fermi level (EF) to be driven by the development of underlying magnetic exchange splitting. Furthermore, we show spectral evidence for the CDW order as gaps that open on the near-EF vHS bands, as well as evidence of electron-phonon coupling from a kink on the vHS band together with phonon hardening observed by inelastic neutron scattering. Our observation points to the magnetic interaction-driven band modification resulting in the formation of the CDW order, indicating an intertwined connection between the emergent magnetism and vHS charge order in this moderately-correlated kagome metal.Comment: submitted on April 22, 202
    • ā€¦
    corecore