51 research outputs found
Review of high-contrast imaging systems for current and future ground- and space-based telescopes I: coronagraph design methods and optical performance metrics
The Optimal Optical Coronagraph (OOC) Workshop at the Lorentz Center in September 2017 in Leiden, the Netherlands gathered a diverse group of 25 researchers working on exoplanet instrumentation to stimulate the emergence and sharing of new ideas. In this first installment of a series of three papers summarizing the outcomes of the OOC workshop, we present an overview of design methods and optical performance metrics developed for coronagraph instruments. The design and optimization of coronagraphs for future telescopes has progressed rapidly over the past several years in the context of space mission studies for Exo-C, WFIRST, HabEx, and LUVOIR as well as ground-based telescopes. Design tools have been developed at several institutions to optimize a variety of coronagraph mask types. We aim to give a broad overview of the approaches used, examples of their utility, and provide the optimization tools to the community. Though it is clear that the basic function of coronagraphs is to suppress starlight while maintaining light from off-axis sources, our community lacks a general set of standard performance metrics that apply to both detecting and characterizing exoplanets. The attendees of the OOC workshop agreed that it would benefit our community to clearly define quantities for comparing the performance of coronagraph designs and systems. Therefore, we also present a set of metrics that may be applied to theoretical designs, testbeds, and deployed instruments. We show how these quantities may be used to easily relate the basic properties of the optical instrument to the detection significance of the given point source in the presence of realistic noise
Simultaneous exoplanet detection and instrument aberration retrieval in multispectral coronagraphic imaging
High-contrast imaging for the detection and characterization of exoplanets
relies on the instrument's capability to block out the light of the host star.
Some current post-processing methods for calibrating out the residual speckles
use information redundancy offered by multispectral imaging but do not use any
prior information on the origin of these speckles. We investigate whether
additional information on the system and image formation process can be used to
more finely exploit the multispectral information. We developed an inversion
method in a Bayesian framework that is based on an analytical imaging model to
estimate both the speckles and the object map. The model links the instrumental
aberrations to the speckle pattern in the image focal plane, distinguishing
between aberrations upstream and downstream of the coronagraph. We propose and
validate several numerical techniques to handle the difficult minimization
problems of phase retrieval and achieve a contrast of 10^6 at 0.2 arcsec from
simulated images, in the presence of photon noise. This opens up the the
possibility of tests on real data where the ultimate performance may override
the current techniques if the instrument has good and stable coronagraphic
imaging quality. This paves the way for new astrophysical exploitations or even
new designs for future instruments
Review of high-contrast imaging systems for current and future ground- and space-based telescopes I. Coronagraph design methods and optical performance metrics
The Optimal Optical Coronagraph (OOC) Workshop at the Lorentz Center in
September 2017 in Leiden, the Netherlands gathered a diverse group of 25
researchers working on exoplanet instrumentation to stimulate the emergence and
sharing of new ideas. In this first installment of a series of three papers
summarizing the outcomes of the OOC workshop, we present an overview of design
methods and optical performance metrics developed for coronagraph instruments.
The design and optimization of coronagraphs for future telescopes has
progressed rapidly over the past several years in the context of space mission
studies for Exo-C, WFIRST, HabEx, and LUVOIR as well as ground-based
telescopes. Design tools have been developed at several institutions to
optimize a variety of coronagraph mask types. We aim to give a broad overview
of the approaches used, examples of their utility, and provide the optimization
tools to the community. Though it is clear that the basic function of
coronagraphs is to suppress starlight while maintaining light from off-axis
sources, our community lacks a general set of standard performance metrics that
apply to both detecting and characterizing exoplanets. The attendees of the OOC
workshop agreed that it would benefit our community to clearly define
quantities for comparing the performance of coronagraph designs and systems.
Therefore, we also present a set of metrics that may be applied to theoretical
designs, testbeds, and deployed instruments. We show how these quantities may
be used to easily relate the basic properties of the optical instrument to the
detection significance of the given point source in the presence of realistic
noise.Comment: To appear in Proceedings of the SPIE, vol. 1069
Discovery of a Transiting Adolescent Sub-Neptune Exoplanet with K2
The role of stellar age in the measured properties and occurrence rates of
exoplanets is not well understood. This is in part due to a paucity of known
young planets and the uncertainties in age-dating for most exoplanet host
stars. Exoplanets with well-constrained ages, particularly those which are
young, are useful as benchmarks for studies aiming to constrain the
evolutionary timescales relevant for planets. Such timescales may concern
orbital migration, gravitational contraction, or atmospheric photo-evaporation,
among other mechanisms. Here we report the discovery of an adolescent
transiting sub-Neptune from K2 photometry of the low-mass star K2-284. From
multiple age indicators we estimate the age of the star to be 120 Myr, with a
68% confidence interval of 100-760 Myr. The size of K2-284 b ( = 2.8
0.1 ) combined with its youth make it an intriguing case study for
photo-evaporation models, which predict enhanced atmospheric mass loss during
early evolutionary stages.Comment: Accepted to AJ, 36 pages, 17 figures, 5 table
The Potential of Exozodiacal Disks Observations with the WFIRST Coronagraph Instrument
The Wide Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) will be the first high-performance stellar coronagraph using active wavefront control for deep starlight suppression in space, providing unprecedented levels of contrast, spatial resolution, and sensitivity for astronomical observations in the optical. One science case enabled by the CGI will be taking images and(R~50)spectra of faint interplanetary dust structures present in the habitable zone of nearby sunlike stars (~10 pc) and within the snow-line of more distant ones(~20pc), down to dust density levels commensurate with that of the solar system zodiacal cloud. Reaching contrast levels below~10-7 for the first time, CGI will cross an important threshold in debris disks physics, accessing disks with low enough optical depths that their structure is dominated by transport phenomena than collisions. Hence, CGI results will be crucial for determining how exozodiacal dust grains are produced and transported in low-density disks around mature stars. Additionally, CGI will be able to measure the brightness level and constrain the degree of asymmetry of exozodiacal clouds around individual nearby sunlike stars in the optical, at the ~10x solar zodiacal emission level. This information will be extremely valuable for optimizing the observational strategy of possible future exo-Earth direct imaging missions, especially those planning to operate at optical wavelengths, such as Habitable Exoplanet Observatory (HabEx) and the Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR)
Spatially Resolved Imaging of the Inner Fomalhaut Disk Using JWST/MIRI
Planetary debris disks around other stars are analogous to the asteroid and Kuiper belts in the Solar System. Their structure reveals the configuration of small bodies and provides hints for the presence of planets. The nearby star Fomalhaut hosts one of the most prominent debris disks, resolved by the Hubble Space Telescope, Spitzer, Herschel and the Atacama Large Millimeter Array. Images of this system at mid-infrared wavelengths using JWST/MIRI not only show the narrow Kuiper belt-analogue outer ring, but also that (1) what was thought from indirect evidence to be an asteroid-analogue structure is instead broad, extending outward into the outer system, and (2) there is an intermediate belt, probably shepherded by an unseen planet. The newly discovered belt is demarcated by an inner gap, located at ~78 au, and it is misaligned relative to the outer belt. The previously known collisionally generated dust cloud, Fomalhaut b, could have originated from this belt, suggesting increased dynamical stirring and collision rates there. We also discovered a large dust cloud within the outer ring, possible evidence of another dust-creating collision. Taken together with previous observations, Fomalhaut appears to be the site of a complex and possibly dynamically active planetary system
JWST/NIRCam Coronagraphy of the Young Planet-hosting Debris Disk AU Microscopii
High-contrast imaging of debris disk systems permits us to assess the
composition and size distribution of circumstellar dust, to probe recent
dynamical histories, and to directly detect and characterize embedded
exoplanets. Observations of these systems in the infrared beyond 2--3 m
promise access to both extremely favorable planet contrasts and numerous
scattered-light spectral features -- but have typically been inhibited by the
brightness of the sky at these wavelengths. We present coronagraphy of the AU
Microscopii (AU Mic) system using JWST's Near Infrared Camera (NIRCam) in two
filters spanning 3--5 m. These data provide the first images of the
system's famous debris disk at these wavelengths and permit additional
constraints on its properties and morphology. Conducting a deep search for
companions in these data, we do not identify any compelling candidates.
However, with sensitivity sufficient to recover planets as small as
Jupiter masses beyond ( au) with
confidence, these data place significant constraints on any massive companions
that might still remain at large separations and provide additional context for
the compact, multi-planet system orbiting very close-in. The observations
presented here highlight NIRCam's unique capabilities for probing similar disks
in this largely unexplored wavelength range, and provide the deepest direct
imaging constraints on wide-orbit giant planets in this very well studied
benchmark system.Comment: 27 pages, 14 figure
Nancy Grace Roman Space Telescope Coronagraph Instrument Observation Calibration Plan
NASA's next flagship mission, the Nancy Grace Roman Space Telescope, is a
2.4-meter observatory set to launch no later than May 2027. Roman features two
instruments: the Wide Field Imager and the Coronagraph Instrument. Roman's
Coronagraph is a Technology Demonstration that will push the current
capabilities of direct imaging to smaller contrast ratios (10) and
inner-working angles (3~/D). In order to achieve this high precision,
Roman Coronagraph data must be calibrated to remove as many potential sources
of error as possible. Here we present a detailed overview of the Nancy Grace
Roman Space Telescope Coronagraph Instrument Observation Calibration Plan
including identifying potential sources of error and how they will be mitigated
via on-sky calibrations.Comment: Posting for public information on the current status of the Roman
Coronagraph Observation Calibration Plan; latest updates as of July 29, 202
Paving the Way to Future Missions: the Roman Space Telescope Coronagraph Technology Demonstration
This document summarizes how far the Nancy Grace Roman Space Telescope
Coronagraph Instrument (Roman CGI) will go toward demonstrating high-contrast
imaging and spectroscopic requirements for potential future exoplanet direct
imaging missions, illustrated by the HabEx and LUVOIR concepts. The assessment
is made for two levels of assumed CGI performance: (i) current best estimate
(CBE) as of August 2020, based on laboratory results and realistic end-to-end
simulations with JPL-standard Model Uncertainty Factors (MUFs); (ii) CGI design
specifications inherited from Phase B requirements. We find that the predicted
performance (CBE) of many CGI subsystems compares favorably with the needs of
future missions, despite providing more modest point source detection limits
than future missions. This is essentially due to the challenging pupil of the
Roman Space Telescope; this pupil pushes the coronagraph masks sensitivities to
misalignments to be commensurate with future missions. In particular, CGI will
demonstrate active low-order wavefront control and photon counting capabilities
at levels of performance either higher than, or comparable to, the needs of
future missions.Comment: 10 pages, 3 tables. Revised version v2: added some co-author
- …