245 research outputs found

    Dimensional Crossover of the Dephasing Time in Disordered Mesoscopic Rings: From Diffusive through Ergodic to 0D Behavior

    Full text link
    We analyze dephasing by electron interactions in a small disordered quasi-one dimensional (1D) ring weakly coupled to leads, where we recently predicted a crossover for the dephasing time \tPh(T) from diffusive or ergodic 1D (\tPh^{-1} \propto T^{2/3}, T^{1}) to 0D0D behavior (\tPh^{-1} \propto T^{2}) as TT drops below the Thouless energy \ETh. We provide a detailed derivation of our results, based on an influence functional for quantum Nyquist noise, and calculate all leading and subleading terms of the dephasing time in the three regimes. Explicitly taking into account the Pauli blocking of the Fermi sea in the metal allows us to describe the 0D0D regime on equal footing as the others. The crossover to 0D0D, predicted by Sivan, Imry and Aronov for 3D systems, has so far eluded experimental observation. We will show that for T \ll \ETh, 0D0D dephasing governs not only the TT-dependence for the smooth part of the magnetoconductivity but also for the amplitude of the Altshuler-Aronov-Spivak oscillations, which result only from electron paths winding around the ring. This observation can be exploited to filter out and eliminate contributions to dephasing from trajectories which do not wind around the ring, which may tend to mask the T2T^{2} behavior. Thus, the ring geometry holds promise of finally observing the crossover to 0D0D experimentally.Comment: in "Perspectives of Mesoscopic Physics - Dedicated to Yoseph Imry's 70th Birthday", edited by Amnon Aharony and Ora Entin-Wohlman (World Scientific, 2010), chap. 20, p. 371-396, ISBN-13 978-981-4299-43-

    Anderson localization transition with long-ranged hoppings : analysis of the strong multifractality regime in terms of weighted Levy sums

    Full text link
    For Anderson tight-binding models in dimension dd with random on-site energies ϵr\epsilon_{\vec r} and critical long-ranged hoppings decaying typically as Vtyp(r)V/rdV^{typ}(r) \sim V/r^d, we show that the strong multifractality regime corresponding to small VV can be studied via the standard perturbation theory for eigenvectors in quantum mechanics. The Inverse Participation Ratios Yq(L)Y_q(L), which are the order parameters of Anderson transitions, can be written in terms of weighted L\'evy sums of broadly distributed variables (as a consequence of the presence of on-site random energies in the denominators of the perturbation theory). We compute at leading order the typical and disorder-averaged multifractal spectra τtyp(q)\tau_{typ}(q) and τav(q)\tau_{av}(q) as a function of qq. For q<1/2q<1/2, we obtain the non-vanishing limiting spectrum τtyp(q)=τav(q)=d(2q1)\tau_{typ}(q)=\tau_{av}(q)=d(2q-1) as V0+V \to 0^+. For q>1/2q>1/2, this method yields the same disorder-averaged spectrum τav(q)\tau_{av}(q) of order O(V)O(V) as obtained previously via the Levitov renormalization method by Mirlin and Evers [Phys. Rev. B 62, 7920 (2000)]. In addition, it allows to compute explicitly the typical spectrum, also of order O(V)O(V), but with a different qq-dependence τtyp(q)τav(q)\tau_{typ}(q) \ne \tau_{av}(q) for all q>qc=1/2q>q_c=1/2. As a consequence, we find that the corresponding singularity spectra ftyp(α)f_{typ}(\alpha) and fav(α)f_{av}(\alpha) differ even in the positive region f>0f>0, and vanish at different values α+typ>α+av\alpha_+^{typ} > \alpha_+^{av}, in contrast to the standard picture. We also obtain that the saddle value αtyp(q)\alpha_{typ}(q) of the Legendre transform reaches the termination point α+typ\alpha_+^{typ} where ftyp(α+typ)=0f_{typ}(\alpha_+^{typ})=0 only in the limit q+q \to +\infty.Comment: 13 pages, 2 figures, v2=final versio

    Thermal noise and dephasing due to electron interactions in non-trivial geometries

    Full text link
    We study Johnson-Nyquist noise in macroscopically inhomogeneous disordered metals and give a microscopic derivation of the correlation function of the scalar electric potentials in real space. Starting from the interacting Hamiltonian for electrons in a metal and the random phase approximation, we find a relation between the correlation function of the electric potentials and the density fluctuations which is valid for arbitrary geometry and dimensionality. We show that the potential fluctuations are proportional to the solution of the diffusion equation, taken at zero frequency. As an example, we consider networks of quasi-1D disordered wires and give an explicit expression for the correlation function in a ring attached via arms to absorbing leads. We use this result in order to develop a theory of dephasing by electronic noise in multiply-connected systems.Comment: 9 pages, 6 figures (version submitted to PRB

    Temperature operating mode of the CuBr+Ne+H2(HBr)-laser at change of pumping

    Get PDF
    The analysis of a temperature mode of the laser on copper bromide vapour using active additives of hydrogen (bromhydrogen) at change of pumping parameters has been carried out. It is shown that introduction of the optimal additive increases the discharge tube wall temperature from 620 up to 720 °С. The increase of wall temperature 50...60 °С more can occur at change of buffer gas pressure from 3,3 to 13,3 kPa, as well as at increase working capacity twice. It is stated that introduction of the additive raises pressure of working substance vapours in the active media of the laser of average diameter 6,7 Pa more due to interaction of bromine, bromhydrogen with copper atoms settled on the tube wall. The peculiarities of laser thermal mode at high frequencies of pulse sequences (up to 100 kHz) have been considered

    A new approach to the treatment of Separatrix Chaos and its applications

    Get PDF
    We consider time-periodically perturbed 1D Hamiltonian systems possessing one or more separatrices. If the perturbation is weak, then the separatrix chaos is most developed when the perturbation frequency lies in the logarithmically small or moderate ranges: this corresponds to the involvement of resonance dynamics into the separatrix chaos. We develop a method matching the discrete chaotic dynamics of the separatrix map and the continuous regular dynamics of the resonance Hamiltonian. The method has allowed us to solve the long-standing problem of an accurate description of the maximum of the separatrix chaotic layer width as a function of the perturbation frequency. It has also allowed us to predict and describe new phenomena including, in particular: (i) a drastic facilitation of the onset of global chaos between neighbouring separatrices, and (ii) a huge increase in the size of the low-dimensional stochastic web
    corecore