241 research outputs found

    Uncovering Extreme Nonlinear Dynamics in Solids Through Time-Domain Field Analysis

    Full text link
    Time-domain analysis of harmonic fields with sub-cycle resolution is now experimentally viable due to the emergence of sensitive, on-chip techniques for petahertz-scale optical-field sampling. We demonstrate how such a time-domain, field-resolved analysis uncovers the extreme nonlinear electron dynamics responsible for high-harmonic generation within solids. Time-dependent density functional theory was used to simulate harmonic generation from a solid-state band-gap system driven by near- to mid-infrared waveforms. Particular attention was paid to regimes where both intraband and interband emission mechanisms play a critical role in shaping the nonlinear response. We show that a time-domain analysis of the harmonic radiation fields identifies the interplay between intra- and interband dynamical processes underlying the nonlinear light generation. With further analysis, we show that changes to the dominant emission regime can occur after only slight changes to the peak driving intensity and central driving wavelength. Time-domain analysis of harmonic fields also reveals, for the first time, the possibility of rapid changes in the dominant emission mechanism within the temporal window of the driving pulse envelope. Finally, we examine the experimental viability of performing time-domain analysis of harmonic fields with sub-cycle resolution using realistic parameters

    Cultivation and characterisation of human peripheral cornea-derived endothelial cells [abstract]

    Get PDF
    To confirm that human corneal rims left over from DALK/DSEK/PK surgeries could be useful sources for ex vivo endothelial cell expansion. Human corneal rims remaining from DALK/DSEK/PK surgeries were utilized (1:1 sex ratio, age 63+20 years, endothelial cell density >2,500 cells/mm2). The time from death to use varied between 3 days and 1.5 months. Endothelial cells isolated using a two-step, peel-and-digest method, whereby the Descemet’s membrane and endothelial cells were peeled off under a dissecting microscope, followed by digestion in collagenase. The isolated cells were suspended in TrypLE prior to plating onto FNC-coated tissue culture plates. The cells were then cultured in Ham’s F12:M199 (1:1) media supplemented with, ascorbic acid, transferrin, sodium selenite and bFGF. Characterisation of the cultured cells was performed by RT-qPCR and immunofluorescence staining accordingly. The number of isolated endothelial cells was repeatedly low (< 20,000 cells). However, improved techniques allowed to reduce stromal cell contamination. It was observed that endothelial cell proliferation was improved when the culture surface area was reduced. Furthermore, typical endothelial cobble stone morphology was observed when the cell density was high. Cell morphology and growth showed notable difference related to donor age and preservation time. ZO-1, Na/K-ATPase and PITX2 were used to confirm the endothelial phenotype. Preserved human corneal rims can be utilized for ex vivo expansion of corneal endothelial cells but further optimization is needed

    Tumor slice culture as a biologic surrogate of human cancer.

    Get PDF
    Background: The tumor microenvironment (TME) is critical to every aspect of cancer biology. Organotypic tumor slice cultures (TSCs) preserve the original TME and have demonstrated utility in predicting drug sensitivity, but the association between clinicopathologic parameters and Methods: One hundred and eight fresh tumor specimens from liver resections at a tertiary academic center were procured and precisely cut with a Vibratome to create 250 μm × 6 mm slices. These fixed-dimension TSCs were grown on polytetrafluoroethylene inserts, and their metabolic activities were determined by a colorimetric assay. Correlation between baseline activities and clinicopathologic parameters was assessed. Tissue CEA mRNA expression was determined by RNAseq. Results: By standardizing the dimensions of a slice, we found that adjacent tumor slices have equivalent metabolic activities, while those derived from different tumors exhibit \u3e30-fold range in baseline MTS absorbances, which correlated significantly with the percentage of tumor necrosis based on histologic assessment. Extending this to individual cancers, we were able to detect intra-tumoral heterogeneity over a span of a few millimeters, which reflects differences in tumor cell density and Ki-67 positivity. For colorectal cancers, tissue CEA expression based on RNAseq of tumor slices was found to correlate with clinical response to chemotherapies. Conclusions: We report a standardized method to assess and compare human cancer growth ex vivo across a wide spectrum of tumor samples. TSC reflects the state of tumor behavior and heterogeneity, thus providing a simple approach to study of human cancers with an intact TME

    VX Hydrolysis by Human Serum Paraoxonase 1: A Comparison of Experimental and Computational Results

    Get PDF
    Human Serum paraoxonase 1 (HuPON1) is an enzyme that has been shown to hydrolyze a variety of chemicals including the nerve agent VX. While wildtype HuPON1 does not exhibit sufficient activity against VX to be used as an in vivo countermeasure, it has been suggested that increasing HuPON1's organophosphorous hydrolase activity by one or two orders of magnitude would make the enzyme suitable for this purpose. The binding interaction between HuPON1 and VX has recently been modeled, but the mechanism for VX hydrolysis is still unknown. In this study, we created a transition state model for VX hydrolysis (VXts) in water using quantum mechanical/molecular mechanical simulations, and docked the transition state model to 22 experimentally characterized HuPON1 variants using AutoDock Vina. The HuPON1-VXts complexes were grouped by reaction mechanism using a novel clustering procedure. The average Vina interaction energies for different clusters were compared to the experimentally determined activities of HuPON1 variants to determine which computational procedures best predict how well HuPON1 variants will hydrolyze VX. The analysis showed that only conformations which have the attacking hydroxyl group of VXts coordinated by the sidechain oxygen of D269 have a significant correlation with experimental results. The results from this study can be used for further characterization of how HuPON1 hydrolyzes VX and design of HuPON1 variants with increased activity against VX.United States. Defense Threat Reduction Agenc

    Are Tanzanian patients attending public facilities or private retailers more likely to adhere to artemisinin-based combination therapy?

    Get PDF
    BACKGROUND: Artemisinin combination therapy (ACT) is first-line treatment for malaria in most endemic countries and is increasingly available in the private sector. Most studies on ACT adherence have been conducted in the public sector, with minimal data from private retailers. METHODS: Parallel studies were conducted in Tanzania, in which patients obtaining artemether-lumefantrine (AL) at 40 randomly selected public health facilities and 37 accredited drug dispensing outlets (ADDOs) were visited at home and questioned about doses taken. The effect of sector on adherence, controlling for potential confounders was assessed using logistic regression with a random effect for outlet. RESULTS: Of 572 health facility patients and 450 ADDO patients, 74.5% (95% CI: 69.8, 78.8) and 69.8% (95% CI: 64.6, 74.5), respectively, completed treatment and 46.0% (95% CI: 40.9, 51.2) and 34.8% (95% CI: 30.1, 39.8) took each dose at the correct time ('timely completion'). ADDO patients were wealthier, more educated, older, sought care later in the day, and were less likely to test positive for malaria than health facility patients. Controlling for patient characteristics, the adjusted odds of completed treatment and of timely completion for ADDO patients were 0.65 (95% CI: 0.43, 1.00) and 0.69 (95% CI: 0.47, 1.01) times that of health facility patients. Higher socio-economic status was associated with both adherence measures. Higher education was associated with completed treatment (adjusted OR = 1.68, 95% CI: 1.20, 2.36); obtaining AL in the evening was associated with timely completion (adjusted OR = 0.35, 95% CI: 0.19, 0.64). Factors associated with adherence in each sector were examined separately. In both sectors, recalling correct instructions was positively associated with both adherence measures. In health facility patients, but not ADDO patients, taking the first dose of AL at the outlet was associated with timely completion (adjusted OR = 2.11, 95% CI: 1.46, 3.04). CONCLUSION: When controlling for patient characteristics, there was some evidence that the adjusted odds of adherence for ADDO patients was lower than that for public health facility patients. Better understanding is needed of which patient care aspects are most important for adherence, including the role of effective provision of advice

    Characterization of Aniline Tetramer by MALDI TOF Mass Spectrometry upon Oxidative and Reductive Cycling.

    Get PDF
    By combining electrochemical experiments with mass spectrometric analysis, it is found that using short chain oligomers to improve the cycling stability of conducting polymers in supercapacitors is still problematic. Cycling tests via cyclic voltammetry over a potential window of 0 to 1.0 V or 0 to 1.2 V in a two-electrode device configuration resulted in solid-state electropolymerization and chain scission. Electropolymerization of the aniline tetramer to generate long chain oligomers is shown to be possible despite the suggested decrease in reactivity and increase in intermediate stability with longer oligomers. Because aniline oligomers are more stable towards reductive cycling when compared to oxidative cycling, future conducting polymer/oligomer-based pseudocapacitors should consider using an asymmetric electrode configuration

    Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC) : a pragmatic, cluster randomised controlled trial

    Get PDF
    BACKGROUND: Mechanical chest compression devices have the potential to help maintain high-quality cardiopulmonary resuscitation (CPR), but despite their increasing use, little evidence exists for their effectiveness. We aimed to study whether the introduction of LUCAS-2 mechanical CPR into front-line emergency response vehicles would improve survival from out-of-hospital cardiac arrest. METHODS: The pre-hospital randomised assessment of a mechanical compression device in cardiac arrest (PARAMEDIC) trial was a pragmatic, cluster-randomised open-label trial including adults with non-traumatic, out-of-hospital cardiac arrest from four UK Ambulance Services (West Midlands, North East England, Wales, South Central). 91 urban and semi-urban ambulance stations were selected for participation. Clusters were ambulance service vehicles, which were randomly assigned (1:2) to LUCAS-2 or manual CPR. Patients received LUCAS-2 mechanical chest compression or manual chest compressions according to the first trial vehicle to arrive on scene. The primary outcome was survival at 30 days following cardiac arrest and was analysed by intention to treat. Ambulance dispatch staff and those collecting the primary outcome were masked to treatment allocation. Masking of the ambulance staff who delivered the interventions and reported initial response to treatment was not possible. The study is registered with Current Controlled Trials, number ISRCTN08233942. FINDINGS: We enrolled 4471 eligible patients (1652 assigned to the LUCAS-2 group, 2819 assigned to the control group) between April 15, 2010 and June 10, 2013. 985 (60%) patients in the LUCAS-2 group received mechanical chest compression, and 11 (<1%) patients in the control group received LUCAS-2. In the intention-to-treat analysis, 30 day survival was similar in the LUCAS-2 group (104 [6%] of 1652 patients) and in the manual CPR group (193 [7%] of 2819 patients; adjusted odds ratio [OR] 0·86, 95% CI 0·64-1·15). No serious adverse events were noted. Seven clinical adverse events were reported in the LUCAS-2 group (three patients with chest bruising, two with chest lacerations, and two with blood in mouth). 15 device incidents occurred during operational use. No adverse or serious adverse events were reported in the manual group. INTERPRETATION: We noted no evidence of improvement in 30 day survival with LUCAS-2 compared with manual compressions. On the basis of ours and other recent randomised trials, widespread adoption of mechanical CPR devices for routine use does not improve survival

    Yeast Based Small Molecule Screen for Inhibitors of SARS-CoV

    Get PDF
    Severe acute respiratory coronavirus (SARS-CoV) emerged in 2002, resulting in roughly 8000 cases worldwide and 10% mortality. The animal reservoirs for SARS-CoV precursors still exist and the likelihood of future outbreaks in the human population is high. The SARS-CoV papain-like protease (PLP) is an attractive target for pharmaceutical development because it is essential for virus replication and is conserved among human coronaviruses. A yeast-based assay was established for PLP activity that relies on the ability of PLP to induce a pronounced slow-growth phenotype when expressed in S. cerevisiae. Induction of the slow-growth phenotype was shown to take place over a 60-hour time course, providing the basis for conducting a screen for small molecules that restore growth by inhibiting the function of PLP. Five chemical suppressors of the slow-growth phenotype were identified from the 2000 member NIH Diversity Set library. One of these, NSC158362, potently inhibited SARS-CoV replication in cell culture without toxic effects on cells, and it specifically inhibited SARS-CoV replication but not influenza virus replication. The effect of NSC158362 on PLP protease, deubiquitinase and anti-interferon activities was investigated but the compound did not alter these activities. Another suppressor, NSC158011, demonstrated the ability to inhibit PLP protease activity in a cell-based assay. The identification of these inhibitors demonstrated a strong functional connection between the PLP-based yeast assay, the inhibitory compounds, and SARS-CoV biology. Furthermore the data with NSC158362 suggest a novel mechanism for inhibition of SARS-CoV replication that may involve an unknown activity of PLP, or alternatively a direct effect on a cellular target that modifies or bypasses PLP function in yeast and mammalian cells

    A Multiwell Platform for Studying Stiffness-Dependent Cell Biology

    Get PDF
    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes

    Sirt1 Deficiency Attenuates Spermatogenesis and Germ Cell Function

    Get PDF
    In mammals, Sirt1, a member of the sirtuin family of proteins, functions as a nicotinamide adenine dinucleotide-dependent protein deactylase, and has important physiological roles, including the regulation of glucose metabolism, cell survival, and mitochondrial respiration. The initial investigations of Sirt1 deficient mice have revealed a phenotype that includes a reduced lifespan, small size, and an increased frequency of abnormal sperm. We have now performed a detailed analysis of the molecular and functional effects of Sirt1 deficiency in the germ line of Sirt1 knock-out (−/−) mice. We find that Sirt1 deficiency markedly attenuates spermatogenesis, but not oogenesis. Numbers of mature sperm and spermatogenic precursors, as early as d15.5 of development, are significantly reduced (∼2-10-fold less; P≤0.004) in numbers in Sirt1−/− mice, whereas Sirt1 deficiency did not effect the efficiency oocyte production following superovulation of female mice. Furthermore, the proportion of mature sperm with elevated DNA damage (∼7.5% of total epididymal sperm; P = 0.02) was significantly increased in adult Sirt1−/− males. Analysis of global gene expression by microarray analysis in Sirt1 deficient testis revealed dysregulated expression of 85 genes, which were enriched (P<0.05) for genes involved in spermatogenesis and protein sumoylation. To assess the function of Sirt1 deficient germ cells, we compared the efficiency of generating embryos and viable offspring in in vitro fertilization (IVF) experiments using gametes from Sirt1−/− and sibling Sirt1+/− mice. While viable animals were derived in both Sirt1−/− X wild type and Sirt1−/− X Sirt1−/− crosses, the efficiency of producing both 2-cell zygotes and viable offspring was diminished when IVF was performed with Sirt1−/− sperm and/or oocytes. Together, these data support an important role for Sirt1 in spermatogenesis, including spermatogenic stem cells, as well as germ cell function
    corecore