26 research outputs found

    Consecutive treatment with phytase and arazyme influence protein hydrolysis of soybean meal

    Get PDF
    Soybean meal (SBM) is the main protein supplement used in animal feed worldwide. The degree of hydrolysis (DH) of SBM treated with two enzymes viz. phytase and arazyme was investigated for the first time in this study. The DH of SBM in the treatment with arazyme increased significantly as compared to the control without enzyme application. About 1.5-times and 10-fold higher DH were observed in phytase treatment when compared to the control treatments containing no enzyme. At the end of 24 h, enzymatic hydrolysis was done through consecutive treatment with 0.5% (w/v) phytase and 0.02% (w/v) arazyme, and the protein in the hydrolysate were mostly degraded free amino acids and peptides (<6 KDa) when SDS-PAGE and fast protein liquid chromatography (FPLC) techniques used. Free amino acids contents of the soybean meal treated with phytase-arazyme increased by 2 to 14 fold as compared to products without enzyme. These results suggested that soybean meal proteins continuously treated with phytase and arazyme can be used as commercial feed additive for accelerated livestock growth.Key words: Soybean meal, phytase, arazyme, hydrolysis

    Cancer stem cell metabolism: A potential target for cancer therapy

    Get PDF
    © 2016 The Author(s). Cancer Stem cells (CSCs) are a unipotent cell population present within the tumour cell mass. CSCs are known to be highly chemo-resistant, and in recent years, they have gained intense interest as key tumour initiating cells that may also play an integral role in tumour recurrence following chemotherapy. Cancer cells have the ability to alter their metabolism in order to fulfil bio-energetic and biosynthetic requirements. They are largely dependent on aerobic glycolysis for their energy production and also are associated with increased fatty acid synthesis and increased rates of glutamine utilisation. Emerging evidence has shown that therapeutic resistance to cancer treatment may arise due to dysregulation in glucose metabolism, fatty acid synthesis, and glutaminolysis. To propagate their lethal effects and maintain survival, tumour cells alter their metabolic requirements to ensure optimal nutrient use for their survival, evasion from host immune attack, and proliferation. It is now evident that cancer cells metabolise glutamine to grow rapidly because it provides the metabolic stimulus for required energy and precursors for synthesis of proteins, lipids, and nucleic acids. It can also regulate the activities of some of the signalling pathways that control the proliferation of cancer cells. This review describes the key metabolic pathways required by CSCs to maintain a survival advantage and highlights how a combined approach of targeting cellular metabolism in conjunction with the use of chemotherapeutic drugs may provide a promising strategy to overcome therapeutic resistance and therefore aid in cancer therapy

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Full text link

    The integrated biomarker response revisited: optimization to avoid misuse

    No full text
    The growing need to evaluate the quality of aquatic ecosystems led to the development of numerous monitoring tools. Among them, the development of biomarker-based procedures, that combine precocity and relevance, is recommended. However, multi-biomarker approaches are often hard to interpret, and produce results that are not easy to integrate in the environmental policies framework. Integrative index have been developed, and one of the most used is the integrated biomarker response (IBR). However, an analysis of available literature demonstrated that the IBR suffers from a frequent misuse and a bias in its calculation. Then, we propose here a new calculation method based on both a more simple formula and a permutation procedure. Together, these improvements should rightly avoid the misuse and bias that were recorded. Additionally, a case study illustrates how the new procedure enabled to perform a reliable classification of site along a pollution gradient based on biomarker responses used in the IBR calculations
    corecore