15,837 research outputs found
Nonequilibrium flow computations. 1: An analysis of numerical formulations of conservation laws
Modern numerical techniques employing properties of flux Jacobian matrices are extended to general, nonequilibrium flows. Generalizations of the Beam-Warming scheme, Steger-Warming and van Leer Flux-vector splittings, and Roe's approximate Riemann solver are presented for 3-D, time-varying grids. The analysis is based on a thermodynamic model that includes the most general thermal and chemical nonequilibrium flow of an arbitrary gas. Various special cases are also discussed
The Supplemental Nutrition Assistance Program and Nutrient Intakes
The socioeconomic determinants of Food Stamp Program participation and the effects of program participation on nutrient intakes are investigated, using data from the 2003–04 and 2005–06 National Health and Nutrition Examination Survey (NHANES). An endogenous switching regression system of equations is estimated, which includes protein, vitamin A, vitamin C, calcium and iron. Participation in the FSP is found to play an important role in nutrient intakes. Socio-demographic variables such as income, household size and presence of children are also found to affect individuals’ decisions on program participation and nutrient intakes.Food Consumption/Nutrition/Food Safety, Food Security and Poverty,
Optimal Tests of Treatment Effects for the Overall Population and Two Subpopulations in Randomized Trials, using Sparse Linear Programming
We propose new, optimal methods for analyzing randomized trials, when it is
suspected that treatment effects may differ in two predefined subpopulations.
Such sub-populations could be defined by a biomarker or risk factor measured at
baseline. The goal is to simultaneously learn which subpopulations benefit from
an experimental treatment, while providing strong control of the familywise
Type I error rate. We formalize this as a multiple testing problem and show it
is computationally infeasible to solve using existing techniques. Our solution
involves a novel approach, in which we first transform the original multiple
testing problem into a large, sparse linear program. We then solve this problem
using advanced optimization techniques. This general method can solve a variety
of multiple testing problems and decision theory problems related to optimal
trial design, for which no solution was previously available. In particular, we
construct new multiple testing procedures that satisfy minimax and Bayes
optimality criteria. For a given optimality criterion, our new approach yields
the optimal tradeoff? between power to detect an effect in the overall
population versus power to detect effects in subpopulations. We demonstrate our
approach in examples motivated by two randomized trials of new treatments for
HIV
An in vitro mechanism study on the proliferation and pluripotency of human embryonic stems cells in response to magnesium degradation.
Magnesium (Mg) is a promising biodegradable metallic material for applications in cellular/tissue engineering and biomedical implants/devices. To advance clinical translation of Mg-based biomaterials, we investigated the effects and mechanisms of Mg degradation on the proliferation and pluripotency of human embryonic stem cells (hESCs). We used hESCs as the in vitro model system to study cellular responses to Mg degradation because they are sensitive to toxicants and capable of differentiating into any cell types of interest for regenerative medicine. In a previous study when hESCs were cultured in vitro with either polished metallic Mg (99.9% purity) or pre-degraded Mg, cell death was observed within the first 30 hours of culture. Excess Mg ions and hydroxide ions induced by Mg degradation may have been the causes for the observed cell death; hence, their respective effects on hESCs were investigated for the first time to reveal the potential mechanisms. For this purpose, the mTeSR®1 hESC culture media was either modified to an alkaline pH of 8.1 or supplemented with 0.4-40 mM of Mg ions. We showed that the initial increase of media pH to 8.1 had no adverse effect on hESC proliferation. At all tested Mg ion dosages, the hESCs grew to confluency and retained pluripotency as indicated by the expression of OCT4, SSEA3, and SOX2. When the supplemental Mg ion dosages increased to greater than 10 mM, however, hESC colony morphology changed and cell counts decreased. These results suggest that Mg-based implants or scaffolds are promising in combination with hESCs for regenerative medicine applications, providing their degradation rate is moderate. Additionally, the hESC culture system could serve as a standard model for cytocompatibility studies of Mg in vitro, and an identified 10 mM critical dosage of Mg ions could serve as a design guideline for safe degradation of Mg-based implants/scaffolds
- …